Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(10): 6688-6699, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33902278

RESUMEN

While carboxylic acids are important components in both particle and gas phases in the atmosphere, their sources and partitioning are not fully understood. In this study, we present real-time measurements of both particle- and gas-phase concentrations for five of the most common and abundant low-molecular-weight carboxylic acids (LMWCA) in a rural region in the southeastern U.S. in Fall 2016. Through comparison with secondary organic aerosol (SOA) tracers, we find that isoprene was the most important local precursor for all five LMWCA but via different pathways. We propose that monocarboxylic acids (formic and acetic acids) were mainly formed through gas-phase photochemical reactions, while dicarboxylic acids (oxalic, malonic, and succinic acids) were predominantly from aqueous processing. Unexpectedly high concentrations of particle-phase formic and acetic acids (in the form of formate and acetate, respectively) were observed and likely the components of long-range transport organic aerosol (OA), decoupled from their gas-phase counterparts. In addition, an extraordinarily strong correlation (R2 = 0.90) was observed between a particulate LMWCA and aged SOA, which we tentatively attribute to boundary layer dynamics.


Asunto(s)
Atmósfera , Ácidos Carboxílicos , Aerosoles , Sudeste de Estados Unidos
2.
Environ Sci Technol ; 51(6): 3355-3363, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28212018

RESUMEN

Hydroperoxyl radical (HO2) is a key species to atmospheric chemistry. At warm temperatures, the HO2 and NO2 come to a rapid steady state with pernitric acid (HO2NO2). This paper presents the derivation of HO2 from observations of HO2NO2 and NO2 in metropolitan Atlanta, US, in winter 2014 and summer 2015. HO2 was observed to have a diurnal cycle with morning concentrations suppressed by high NO from the traffic. At night, derived HO2 levels were nonzero and exhibited correlations with O3 and NO3, consistent with previous studies that ozonolysis and oxidation by NO3 are sources of nighttime HO2. Measured and model calculated HO2 were in reasonable agreement: Without the constraint of measured HO2NO2, the model reproduced HO2 with a model-to-observed ratio (M/O) of 1.27 (r = 0.54) for winter, 2014, and 0.70 (r = 0.80) for summer, 2015. Adding measured HO2NO2 as a constraint, the model predicted HO2 with M/O = 1.13 (r = 0.77) for winter 2014 and 0.90 (r = 0.97) for summer 2015. These results demonstrate the feasibility of deriving HO2 from HO2NO2 measurements in warm regions where HO2NO2 has a short lifetime.


Asunto(s)
Yoduros , Estaciones del Año , Espectrometría de Masas , Oxidación-Reducción , Temperatura
3.
Sci Adv ; 7(50): eabl3648, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34878847

RESUMEN

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.

4.
Anal Chem ; 75(20): 5317-27, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14710808

RESUMEN

Laboratory characterizations of the peroxy radical chemical ionization mass spectrometer (PerCIMS) instrument have been performed. The instrument functions by drawing ambient air through a 50-microm-diameter orifice into an inlet held at low pressure. Peroxy radicals (HO2 and RO2) within this air are detected by amplified chemical conversion into a unique ion (HSO4-) via the chemistry initiated by the addition of NO and SO2 to the inlet. HSO4- ions are then quantified by a quadrupole filter mass spectrometer. PerCIMS provides measurements of the sum of peroxy radicals, HO2 + RO2 (HOxROx mode), or the HO2 component only (HO2 mode), achieved through the control of concentration of NO and SO2 added to the instrument. The characterization and response of this instrument have been evaluated through modeling of inlet chemistry and laboratory experiments and have also been demonstrated through successful deployment during field campaigns. The performance of PerCIMS with respect to calibration pressure and relative humidity is reported, as are the sensitivities of the instrument to organic peroxy radicals with different hydrocarbon groups. These data show PerCIMS to be a practical field instrument for the fast and accurate evaluation of the concentration of peroxy radicals over a variety of atmospheric conditions. The estimated accuracy of the derived [HOxROx] concentrations is +/- 35% (at the 95% confidence interval), while [HO2] measurements have accuracies of +/- 41% (at the 95% confidence interval). Typical precision of measurements well above the detection limit is 10%, and typical detection limits are 1 x 10(7) radicals cm(-3) for 15-s averaging times.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA