Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brain ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808482

RESUMEN

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomo-functional mechanisms governing human behaviour as well as the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. While the ventral tegmental area has been successfully targeted with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region has not been fully understood. Here using fiber micro-dissections in human cadaveric hemispheres, population-based high-definition fiber tractography, and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain, and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches, and aggressive behaviors.

2.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762046

RESUMEN

Radiation therapy (RT) has recently demonstrated promise at stimulating an enhanced immune response. The recent success of immunotherapies, such as checkpoint inhibitors, CART cells, and other immune modulators, affords new opportunities for combination with radiation. The aim of this study is to evaluate whether and to what extent blockade of VISTA, an immune checkpoint, can potentiate the tumor control ability of radiation therapy. Our study is novel in that it is the first comparison of two VISTA-blocking methods (antibody inhibition and genetic knockout) in combination with RT. VISTA was blocked either through genetic knockout (KO) or an inhibitory antibody and combined with RT in two syngeneic murine flank tumor models (B16 and MC38). Selected mRNA, immune cell infiltration, and tumor growth delay were used to assess the biological effects. When combined with a single 15Gy radiation dose, VISTA blockade via genetic knockout in the B16 model and via anti-VISTA antibodies in the MC38 model significantly improved survival compared to RT alone by an average of 5.5 days and 6.3 days, respectively (p < 0.05). The gene expression data suggest that the mechanism behind the enhanced tumor control is primarily a result of increased apoptosis and immune-mediated cytotoxicity. VISTA blockade significantly enhances the anti-tumor effect of a single dose of 15Gy radiation through increased expression and stimulation of cell-mediated apoptosis pathways. These results suggest that VISTA is a biologically relevant immune promoter that has the potential to enhance the efficacy of a large single radiation dose in a synergic manner.


Asunto(s)
Adenocarcinoma , Melanoma , Animales , Ratones , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/radioterapia , Anticuerpos , Modelos Animales de Enfermedad , Melanoma/tratamiento farmacológico , Melanoma/radioterapia , Linfocitos T , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
3.
Neurobiol Learn Mem ; 185: 107517, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34500052

RESUMEN

Prior studies with permanent lesion methods have demonstrated a role for the retrosplenial cortex (RSC) in the retrieval of remotely, but not recently, acquired delay fear conditioning. To extend the generalizability of these prior findings, the present experiments used chemogenetics to temporarily inactivate the RSC during either retrieval or encoding of delay auditory fear conditioning. Inactivation of the RSC at the time of test impaired retrieval of a remotely conditioned auditory cue, but not a recently conditioned one. In addition, inactivation of the RSC during encoding had no impact on freezing during later retrieval testing for both a remotely and recently conditioned auditory cue. These findings indicate that the RSC contributes to the retrieval, but not encoding, of remotely acquired auditory fear conditioning, and suggest it has less of a role in both retrieval and encoding of recently acquired auditory fear conditioning.


Asunto(s)
Condicionamiento Clásico/fisiología , Miedo/fisiología , Giro del Cíngulo/fisiología , Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Estimulación Acústica , Animales , Miedo/psicología , Giro del Cíngulo/anatomía & histología , Masculino , Ratas , Ratas Long-Evans
4.
Cancer Treat Res Commun ; 38: 100789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38262125

RESUMEN

BACKGROUND: Glioblastoma is the most common primary malignant and treatment-resistant human brain tumor. Rodent models have played an important role in understanding brain cancer biology and treatment. However, due to their small cranium and tumor volume mismatch, relative to human disease, they have been less useful for translational studies. Therefore, development of a consistent and simple large animal glioma xenograft model would have significant translational benefits. METHODS: Immunosuppression was induced in twelve standard Yucatan minipigs. 3 pigs received cyclosporine only, while 9 pigs received a combined regimen including cyclosporine (55 mg/kg q12 h), prednisone (25 mg, q24 h) and mycophenolate (500 mg q24 h). U87 cells (2 × 106) were stereotactically implanted into the left frontal cortex. The implanted brains were imaged by MRI for monitoring. In a separate study, tumors were grown in 5 additional pigs using the combined regimen, and pigs underwent tumor resection with intra-operative image updating to determine if the xenograft model could accurately capture the spatial tumor resection challenges seen in humans. RESULTS: Tumors were successfully implanted and grown in 11 pigs. One animal in cyclosporine only group failed to show clinical tumor growth. Clinical tumor growth, assessed by MRI, progressed slowly over the first 10 days, then rapidly over the next 10 days. The average tumor growth latency period was 20 days. Animals were monitored twice daily and detailed records were kept throughout the experimental period. Pigs were sacrificed humanely when the tumor reached 1 - 2 cm. Some pigs experienced decreased appetite and activity, however none required premature euthanasia. In the image updating study, all five pigs demonstrated brain shift after craniotomy, consistent with what is observed in humans. Intraoperative image updating was able to accurately capture and correct for this shift in all five pigs. CONCLUSION: This report demonstrates the development and use of a human intracranial glioma model in an immunosuppressed, but nongenetically modified pig. While the immunosuppression of the model may limit its utility in certain studies, the model does overcome several limitations of small animal or genetically modified models. For instance, we demonstrate use of this model for guiding surgical resection with intraoperative image-updating technologies. We further report use of a surrogate extracranial tumor that indicates growth of the intracranial tumor, allowing for relative growth assessment without radiological imaging.


Asunto(s)
Neoplasias Encefálicas , Ciclosporinas , Glioma , Humanos , Porcinos , Animales , Xenoinjertos , Reproducibilidad de los Resultados , Porcinos Enanos , Glioma/tratamiento farmacológico , Glioma/cirugía , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Terapia de Inmunosupresión , Modelos Animales de Enfermedad
5.
Adv Radiat Oncol ; 9(6): 101492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711960

RESUMEN

Purpose: Ultra High Dose-Rate (UHDR) radiation has been reported to spare normal tissue, compared with Conventional Dose-Rate (CDR) radiation. However, important work remains to be done to improve the reproducibility of the FLASH effect. A better understanding of the biologic factors that modulate the FLASH effect may shed light on the mechanism of FLASH sparing. Here, we evaluated whether sex and/or the use of 100% oxygen as a carrier gas during irradiation contribute to the variability of the FLASH effect. Methods and Materials: C57BL/6 mice (24 male, 24 female) were anesthetized using isoflurane mixed with either room air or 100% oxygen. Subsequently, the mice received 27 Gy of either 9 MeV electron UHDR or CDR to a 1.6 cm2 diameter area of the right leg skin using the Mobetron linear accelerator. The primary postradiation endpoint was time to full thickness skin ulceration. In a separate cohort of mice (4 male, 4 female), skin oxygenation was measured using PdG4 Oxyphor under identical anesthesia conditions. Results: Neither supplemental oxygen nor sex affected time to ulceration in CDR irradiated mice. In the UHDR group, skin damage occured earlier in male and female mice that received 100% oxygen compared room air and female mice ulcerated sooner than male mice. However, there was no significant difference in time to ulceration between male and female UHDR mice that received room air. Oxygen measurements showed that tissue oxygenation was significantly higher when using 100% oxygen as the anesthesia carrier gas than when using room air, and female mice showed higher levels of tissue oxygenation than male mice under 100% oxygen. Conclusions: The skin FLASH sparing effect is significantly reduced when using oxygen during anesthesia rather than room air. FLASH sparing was also reduced in female mice compared to male mice. Both tissue oxygenation and sex are likely sources of variability in UHDR studies. These results suggest an oxygen-based mechanism for FLASH, as well as a key role for sex in the FLASH skin sparing effect.

6.
Radiat Res ; 200(3): 223-231, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37590482

RESUMEN

Recent studies suggest ultra-high dose rate radiation treatment (UHDR-RT) reduces normal tissue damage compared to conventional radiation treatment (CONV-RT) at the same dose. In this study, we compared first, the kinetics and degree of skin damage in wild-type C57BL/6 mice, and second, tumor treatment efficacy in GL261 and B16F10 dermal tumor models, at the same UHDR-RT and CONV-RT doses. Flank skin of wild-type mice received UHDR-RT or CONV-RT at 25 Gy and 30 Gy. Normal skin damage was tracked by clinical observation to determine the time to moist desquamation, an endpoint which was verified by histopathology. Tumors were inoculated on the right flank of the mice, then received UHDR-RT or CONV-RT at 1 × 11 Gy, 1 × 15, 1 × 25, 3 × 6 and 3 × 8 Gy, and time to tumor tripling volume was determined. Tumors also received 1 × 11, 1 × 15, 3 × 6 and 3 × 8 Gy doses for assessment of CD8+/CD4+ tumor infiltrate and genetic expression 96 h postirradiation. All irradiations of the mouse tumor or flank skin were performed with megavoltage electron beams (10 MeV, 270 Gy/s for UHDR-RT and 9 MeV, 0.12 Gy/s for CONV-RT) delivered via a clinical linear accelerator. Tumor control was statistically equal for similar doses of UHDR-RT and CONV-RT in B16F10 and GL261 murine tumors. There were variable qualitative differences in genetic expression of immune and cell damage-associated pathways between UHDR and CONV irradiated B16F10 tumors. Compared to CONV-RT, UHDR-RT resulted in an increased latent period to skin desquamation after a single 25 Gy dose (7 days longer). Time to moist skin desquamation did not significantly differ between UHDR-RT and CONV-RT after a 30 Gy dose. The histomorphological characteristics of skin damage were similar for UHDR-RT and CONV-RT. These studies demonstrated similar tumor control responses for equivalent single and fractionated radiation doses, with variable difference in expression of tumor progression and immune related gene pathways. There was a modest UHDR-RT skin sparing effect after a 1 × 25 Gy dose but not after a 1 × 30 Gy dose.


Asunto(s)
Neoplasias , Traumatismos por Radiación , Ratones , Animales , Ratones Endogámicos C57BL , Piel/efectos de la radiación , Neoplasias/patología , Modelos Animales de Enfermedad , Traumatismos por Radiación/patología , Dosificación Radioterapéutica
7.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961549

RESUMEN

Introduction: Ultra-high dose-rate (UHDR) radiation has been reported to spare normal tissue compared to conventional dose-rate (CDR) radiation. However, reproducibility of the FLASH effect remains challenging due to varying dose ranges, radiation beam structure, and in-vivo endpoints. A better understanding of these inconsistencies may shed light on the mechanism of FLASH sparing. Here, we evaluate whether sex and/or use of 100% oxygen as carrier gas during irradiation contribute to the variability of the FLASH effect. Methods: C57BL/6 mice (24 male, 24 female) were anesthetized using isoflurane mixed with either room air or 100% oxygen. Subsequently, the mice received 27 Gy of either 9 MeV electron UHDR or CDR to a 1.6 cm2 diameter area of the right leg skin using the Mobetron linear accelerator. The primary post-radiation endpoint was time to full thickness skin ulceration. In a separate cohort of mice (4 male, 4 female) skin oxygenation was measured using PdG4 Oxyphor under identical anesthesia conditions. Results: In the UHDR group, time to ulceration was significantly shorter in mice that received 100% oxygen compared to room air, and amongst them female mice ulcerated sooner compared to males. However, no significant difference was observed between male and female UHDR mice that received room air. Oxygen measurements showed significantly higher tissue oxygenation using 100% oxygen as the anesthesia carrier gas compared to room air, and female mice showed higher levels of tissue oxygenation compared to males under 100% oxygen. Conclusion: The FLASH sparing effect is significantly reduced using oxygen during anesthesia compared to room air. The FLASH sparing was significantly lower in female mice compared to males. Both tissue oxygenation and sex are likely sources of variability in UHDR studies. These results suggest an oxygen-based mechanism for FLASH, as well as a key role for sex in the FLASH skin sparing effect.

8.
Radiol Case Rep ; 17(5): 1470-1474, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35265242

RESUMEN

Dural arteriovenous fistulae of the middle meningeal artery (MMA-dAVF) are high risk lesions that can lead to intracranial hemorrhage. We describe the case of an adult male that presented with chronic subdural hematomas and was treated with burr hole craniotomy plus middle meningeal artery (MMA) embolization. Although the pre-embolization angiogram showed no signs of a fistula, a fistula arising from the MMA and draining into the superior sagittal sinus emerged intra-operatively. To our knowledge, this is the first case of intra-operative emergence of occult MMA-dAVF with intracranial drainage during MMA embolization for chronic subdural hematoma treatment. This observation supports monitoring for and embolizing spontaneous MMA-dAVF following MMA embolization.

9.
J Exp Psychol Anim Learn Cogn ; 47(4): 476-489, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34516195

RESUMEN

Four experiments manipulated the context in which taste-aversion conditioning occurred when the reinforcer was devalued after instrumental learning. In all experiments, rats learned to lever press in an operant conditioning chamber and then had an aversion to the food-pellet reinforcer conditioned by pairing it with lithium chloride (LiCl) in either that context or a different context. Lever pressing was then tested in extinction to assess its status as a goal-directed action. In Experiment 1, aversion conditioning in the operant conditioning chamber suppressed lever-pressing during the test, but aversion conditioning in the home cage did not. Exposure to the averted pellet in the operant conditioning chamber after conditioning in the home cage did not change this effect (Experiment 2). The same pattern was observed when the different context was a second operant-style chamber (counterbalanced), exposure to the contexts was controlled, and pellets were presented in them in the same manner (Experiment 3). The greater effect of aversion conditioning in the instrumental context was not merely due to potentiated contextual conditioning (Experiment 4). Importantly, consumption tests revealed that the aversion conditioned in the different context had transferred to the test context. Thus, when reinforcer devaluation occurred in a different context, the rats lever pressed in extinction for a reinforcer they would otherwise reject. The results suggest that animals encode contextual information about the reinforcer during instrumental learning and suggest caution in making inferences about action versus habit learning when the reinforcer is devalued in a different context. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Asunto(s)
Extinción Psicológica , Gusto , Animales , Condicionamiento Clásico , Condicionamiento Operante , Aprendizaje , Ratas
10.
Behav Neurosci ; 134(5): 444-459, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32525334

RESUMEN

Extinguished responding will renew when the conditioned stimulus occurs outside the extinction context. Although studies of conditioned freezing have consistently demonstrated a role for the hippocampus in renewal, several studies have demonstrated intact renewal of conditioned suppression despite damage to the hippocampus (Frohardt, Guarraci, & Bouton, 2000; Todd, Jiang, DeAngeli, & Bucci, 2017; Wilson, Brooks, & Bouton, 1995). Because these prior studies have examined renewal when testing occurred in the original conditioning context ("Context A"), the present conditioned suppression experiments examined the role of the hippocampus when testing occurred in a context not associated with prior conditioning ("Context C"). In Experiments 1 and 2, conditioning occurred in Context A, and extinction in Context B. Renewal of conditioned suppression was observed when the extinguished conditioned stimulus (CS) was tested in Context C. However, renewal was attenuated in rats with lesions of the dorsal hippocampus (DH). Summation testing failed to detect conditioned inhibition in the extinction context, suggesting instead that the context acquired negative occasion-setting properties. Attenuated renewal was not due to an inability of DH lesioned rats to discriminate contexts (Experiment 3). These experiments thus demonstrate a role for the DH in renewal of conditioned suppression when testing occurs in a neutral context. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Asunto(s)
Condicionamiento Clásico , Extinción Psicológica , Hipocampo/patología , Animales , Hipocampo/fisiopatología , Masculino , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA