Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(16): e112446, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37427543

RESUMEN

Mitochondria are central regulators of healthspan and lifespan, yet the intricate choreography of multiple, tightly controlled steps regulating mitochondrial biogenesis remains poorly understood. Here, we uncover a pivotal role for specific elements of the 5'-3' mRNA degradation pathway in the regulation of mitochondrial abundance and function. We find that the mRNA degradation and the poly-A tail deadenylase CCR4-NOT complexes form distinct foci in somatic Caenorhabditis elegans cells that physically and functionally associate with mitochondria. Components of these two multi-subunit complexes bind transcripts of nuclear-encoded mitochondria-targeted proteins to regulate mitochondrial biogenesis during ageing in an opposite manner. In addition, we show that balanced degradation and storage of mitochondria-targeted protein mRNAs are critical for mitochondrial homeostasis, stress resistance and longevity. Our findings reveal a multifaceted role of mRNA metabolism in mitochondrial biogenesis and show that fine-tuning of mRNA turnover and local translation control mitochondrial abundance and promote longevity in response to stress and during ageing.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Envejecimiento/metabolismo , Mitocondrias/metabolismo , Longevidad/genética
2.
3.
J Cell Sci ; 136(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37278219

RESUMEN

Neurons are highly polarized, post-mitotic cells that are characterized by unique morphological diversity and complexity. As highly differentiated cells that need to survive throughout organismal lifespan, neurons face exceptional energy challenges in time and space. Therefore, neurons are heavily dependent on a healthy mitochondrial network for their proper function and maintenance under both physiological and stress conditions. Multiple quality control systems have evolved to fine-tune mitochondrial number and quality, thus preserving neuronal energy homeostasis. Here, we review the contribution of mitophagy, a selective form of autophagy that targets dysfunctional or superfluous mitochondria for degradation, in maintaining nervous system homeostasis. In addition, we discuss recent evidence implicating defective or dysregulated mitophagy in the pathogenesis of neurodegenerative diseases.


Asunto(s)
Mitofagia , Enfermedades Neurodegenerativas , Humanos , Mitofagia/fisiología , Autofagia/fisiología , Neuronas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Homeostasis
4.
Bioessays ; 45(3): e2200160, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36709422

RESUMEN

Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease context, elicits adaptive responses inside and outside mitochondria. In this review, we discuss recent developments, relevant to the mechanisms of mitochondrial protein import regulation, with a particular focus on quality control, proteostatic and metabolic cellular responses, triggered upon impairment of mitochondrial protein import.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Citosol/metabolismo , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Transporte de Proteínas
5.
Blood ; 138(14): 1249-1257, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34166485

RESUMEN

The incidence and prognosis of clonal hematopoiesis in patients with isolated neutropenia among patients with idiopathic cytopenia of undetermined significance (ICUS), known as ICUS-N or chronic idiopathic neutropenia (CIN) patients, is poorly defined. The current study sought to investigate the frequency and clinical significance of mutations of genes implicated in myeloid malignancies using next-generation sequencing in patients with CIN (n = 185) with a long follow-up. We found that 21 (11.35%) of 185 patients carried a total of 25 somatic mutations in 6 genes with a median variant allele frequency of 12.75%. The most frequently mutated genes were DNMT3A and TET2 involving >80% of patients, followed by IDH1/2, SRSF2, and ZRSR2. The frequency of transformation to a myeloid malignancy was low in the total group of patients (5 of 185 patients [2.70%]). However, from the transformed patients, 4 belonged to the clonal group (4 of 21 [19.05%]) and 1 to the nonclonal group (1 of 164 [0.61%]), indicating that the presence of mutation(s) confers a relative risk for transformation of 31.24 (P = .0017). The variant allele frequency of the mutant clones in the transformed patients was >10% in all cases, and the genes most frequently associated with malignant transformation were SRSF2 and IDH1. No significant differences were identified between the clonal and nonclonal groups in the severity of neutropenia. Patients with clonal disease were older compared with nonclonal patients. These data contribute to the better understanding of the heterogeneous entities underlying ICUS and highlight the importance of mutation analysis for the diagnosis and prognosis of patients with unexplained neutropenias.


Asunto(s)
Hematopoyesis Clonal , Neutropenia/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Frecuencia de los Genes , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Mutación , Neutropenia/diagnóstico , Pronóstico , Adulto Joven
6.
Biochem J ; 479(1): 75-90, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35029627

RESUMEN

Autophagy is a universal cellular homeostatic process, required for the clearance of dysfunctional macromolecules or organelles. This self-digestion mechanism modulates cell survival, either directly by targeting cell death players, or indirectly by maintaining cellular balance and bioenergetics. Nevertheless, under acute or accumulated stress, autophagy can also contribute to promote different modes of cell death, either through highly regulated signalling events, or in a more uncontrolled inflammatory manner. Conversely, apoptotic or necroptotic factors have also been implicated in the regulation of autophagy, while specific factors regulate both processes. Here, we survey both earlier and recent findings, highlighting the intricate interaction of autophagic and cell death pathways. We, Furthermore, discuss paradigms, where this cross-talk is disrupted, in the context of disease.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Necroptosis/fisiología , Transducción de Señal/fisiología , Animales , Supervivencia Celular/fisiología , Homeostasis/fisiología , Humanos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo
7.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835643

RESUMEN

SNARE proteins reside between opposing membranes and facilitate vesicle fusion, a physiological process ubiquitously required for secretion, endocytosis and autophagy. With age, neurosecretory SNARE activity drops and is pertinent to age-associated neurological disorders. Despite the importance of SNARE complex assembly and disassembly in membrane fusion, their diverse localization hinders the complete understanding of their function. Here, we revealed a subset of SNARE proteins, the syntaxin SYX-17, the synaptobrevins VAMP-7, SNB-6 and the tethering factor USO-1, to be either localized or in close proximity to mitochondria, in vivo. We term them mitoSNAREs and show that animals deficient in mitoSNAREs exhibit increased mitochondria mass and accumulation of autophagosomes. The SNARE disassembly factor NSF-1 seems to be required for the effects of mitoSNARE depletion. Moreover, we find mitoSNAREs to be indispensable for normal aging in both neuronal and non-neuronal tissues. Overall, we uncover a previously unrecognized subset of SNAREs that localize to mitochondria and propose a role of mitoSNARE assembly and disassembly factors in basal autophagy regulation and aging.


Asunto(s)
Envejecimiento , Autofagia , Caenorhabditis elegans , Proteínas SNARE , Animales , Caenorhabditis elegans/fisiología , Endocitosis , Fusión de Membrana , Proteínas SNARE/fisiología
8.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834309

RESUMEN

N6-methyladenine (6mA) in the DNA is a conserved epigenetic mark with various cellular, physiological and developmental functions. Although the presence of 6mA was discovered a few years ago in the nuclear genome of distantly related animal taxa and just recently in mammalian mitochondrial DNA (mtDNA), accumulating evidence at present seriously questions the presence of N6-adenine methylation in these genetic systems, attributing it to methodological errors. In this paper, we present a reliable, PCR-based method to determine accurately the relative 6mA levels in the mtDNA of Caenorhabditis elegans, Drosophila melanogaster and dogs, and show that these levels gradually increase with age. Furthermore, daf-2(-)-mutant worms, which are defective for insulin/IGF-1 (insulin-like growth factor) signaling and live twice as long as the wild type, display a half rate at which 6mA progressively accumulates in the mtDNA as compared to normal values. Together, these results suggest a fundamental role for mtDNA N6-adenine methylation in aging and reveal an efficient diagnostic technique to determine age using DNA.


Asunto(s)
Metilación de ADN , ADN Mitocondrial , Animales , Perros , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Adenina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Envejecimiento/genética , Mamíferos/metabolismo
9.
Biogerontology ; 23(5): 541-557, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36048312

RESUMEN

Life expectancy in Western countries is increasing, with concomitant rise in ageing-related pathologies, including Parkinson's and Alzheimer's disease, as well as other neurodegenerative diseases. Consequently, the medical, psychological and economic burden to society is increasing. Thus, understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to disease is crucial towards promoting quality of life in old age. Caenorhabditis elegans has emerged as a versatile model to study ageing, due to its simplicity, fast life cycle, and the availability of a wide range of biological tools to target specific genes and cells. Indeed, recent studies in C. elegans have revealed that lipid metabolism plays a key role in controlling longevity by impinging on a plethora of molecular pathways and cell types. Here, we summarise findings relevant to the interplay between lipid metabolism and ageing in C. elegans, and discuss the implications for the pathogenesis of age-related disorders in humans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Metabolismo de los Lípidos , Longevidad/genética , Calidad de Vida
10.
EMBO J ; 36(13): 1811-1836, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28596378

RESUMEN

Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.


Asunto(s)
Autofagia , Terminología como Asunto , Animales , Caenorhabditis elegans/fisiología , Drosophila melanogaster/fisiología , Redes Reguladoras de Genes , Ratones , Saccharomyces cerevisiae/fisiología
11.
Nature ; 521(7553): 525-8, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25896323

RESUMEN

Impaired mitochondrial maintenance in disparate cell types is a shared hallmark of many human pathologies and ageing. How mitochondrial biogenesis coordinates with the removal of damaged or superfluous mitochondria to maintain cellular homeostasis is not well understood. Here we show that mitophagy, a selective type of autophagy targeting mitochondria for degradation, interfaces with mitochondrial biogenesis to regulate mitochondrial content and longevity in Caenorhabditis elegans. We find that DCT-1 is a key mediator of mitophagy and longevity assurance under conditions of stress in C. elegans. Impairment of mitophagy compromises stress resistance and triggers mitochondrial retrograde signalling through the SKN-1 transcription factor that regulates both mitochondrial biogenesis genes and mitophagy by enhancing DCT-1 expression. Our findings reveal a homeostatic feedback loop that integrates metabolic signals to coordinate the biogenesis and turnover of mitochondria. Uncoupling of these two processes during ageing contributes to overproliferation of damaged mitochondria and decline of cellular function.


Asunto(s)
Envejecimiento/fisiología , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Mitocondrias/metabolismo , Mitofagia , Envejecimiento/patología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras , Proteínas de Unión al ADN/metabolismo , Homeostasis , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Longevidad , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Mitofagia/genética , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/metabolismo
12.
Adv Exp Med Biol ; 1339: 381-382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35023128

RESUMEN

Ageing is driven by the inexorable and stochastic accumulation of damage in biomolecules vital for proper cellular function. Although this process is fundamentally haphazard and uncontrollable, senescent decline and ageing is broadly influenced by genetic and extrinsic factors. Numerous gene mutations and treatments have been shown to extend the lifespan of diverse organisms ranging from the unicellular Saccharomyces cerevisiae to primates. It is becoming increasingly apparent that most such interventions ultimately interface with cellular stress response mechanisms, suggesting that longevity is intimately related to the ability of the organism to effectively cope with both intrinsic and extrinsic stress. Key determinants of this capacity are the molecular mechanisms that link ageing to main stress response pathways and mediate age-related changes in the effectiveness of the response to stress. How each pathway contributes to modulate the ageing process is not fully elucidated. A better understanding of the dynamics and reciprocal interplay between stress responses and ageing is critical for the development of novel therapeutic strategies that exploit endogenous stress combat pathways against age-associated pathologies.


Asunto(s)
Envejecimiento , Longevidad , Envejecimiento/genética , Animales , Homeostasis , Mitocondrias/genética , Primates
13.
Mol Genet Genomics ; 295(2): 357-371, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31776761

RESUMEN

Females and males differ substantially in various neuronal functions in divergent, sexually dimorphic animal species, including humans. Despite its developmental, physiological and medical significance, understanding the molecular mechanisms by which sex-specific differences in the anatomy and operation of the nervous system are established remains a fundamental problem in biology. Here, we show that in Caenorhabditis elegans (nematodes), the global sex-determining factor TRA-1 regulates food leaving (mate searching), male mating and adaptation to odorants in a sex-specific manner by repressing the expression of goa-1 gene, which encodes the Gα(i/o) subunit of heterotrimeric G (guanine-nucleotide binding) proteins triggering physiological responses elicited by diverse neurotransmitters and sensory stimuli. Mutations in tra-1 and goa-1 decouple behavioural patterns from the number of X chromosomes. TRA-1 binds to a conserved binding site located in the goa-1 coding region, and downregulates goa-1 expression in hermaphrodites, particularly during embryogenesis when neuronal development largely occurs. These data suggest that the sex-determination machinery is an important modulator of heterotrimeric G protein-mediated signalling and thereby various neuronal functions in this organism and perhaps in other animal phyla.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Animales , Sitios de Unión/genética , Caenorhabditis elegans/crecimiento & desarrollo , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Masculino , Mutación/genética , Procesos de Determinación del Sexo/genética , Cromosoma X/genética
14.
Synapse ; 74(1): e22131, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494966

RESUMEN

Mechanisms of synaptic vesicular fusion and neurotransmitter clearance are highly controlled processes whose finely-tuned regulation is critical for neural function. This modulation has been suggested to involve pre-synaptic auto-receptors; however, their underlying mechanisms of action remain unclear. Previous studies with the well-defined C. elegans nervous system have used functional imaging to implicate acid sensing ion channels (ASIC-1) to describe synaptic vesicle fusion dynamics within its eight dopaminergic neurons. Implementing a similar imaging approach with a pH-sensitive fluorescent reporter and fluorescence resonance after photobleaching (FRAP), we analyzed dynamic imaging data collected from individual synaptic termini in live animals. We present evidence that constitutive fusion of neurotransmitter vesicles on dopaminergic synaptic termini is modulated through DOP-2 auto-receptors via a negative feedback loop. Integrating our previous results showing the role of ASIC-1 in a positive feedback loop, we also put forth an updated model for synaptic vesicle fusion in which, along with DAT-1 and ASIC-1, the dopamine auto-receptor DOP-2 lies at a modulatory hub at dopaminergic synapses. Our findings are of potential broader significance as similar mechanisms are likely to be used by auto-receptors for other small molecule neurotransmitters across species.


Asunto(s)
Autorreceptores/metabolismo , Receptores Dopaminérgicos/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Neuronas Dopaminérgicas/metabolismo , Transmisión Sináptica/fisiología
15.
Nature ; 574(7778): 338-340, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31619782

Asunto(s)
Longevidad
16.
Gerontology ; 66(2): 122-130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31505513

RESUMEN

Posttranslational modifications are ubiquitous regulators of cellular processes. The regulatory role of SUMOylation, the attachment of a small ubiquitin-related modifier to a target protein, has been implicated in fundamental processes like cell division, DNA damage repair, mitochondrial homeostasis, and stress responses. Recently, it is gaining more attention in drug discovery as well. As life expectancy keeps rising, more individuals are at risk for developing age-associated diseases. This not only makes a person's life uncomfortable, but it also places an economic burden on society. Therefore, finding treatments for age-related diseases is an important issue. Understanding the basic mechanisms in the cell under normal and disease conditions is fundamental for drug discovery. There is an increasing number of reports showing that the ageing process could be influenced by SUMOylation. Similarly, SUMOylation is essential for proper neuronal function. In this review we summarize the latest results regarding the connection between SUMOylation and neurodegenerative diseases. We highlight the significance of specific SUMO target proteins and the importance of SUMO isoform specificity.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/fisiología , Animales , Humanos , Ratones
17.
Adv Exp Med Biol ; 1195: 33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32468455

RESUMEN

Autophagy is crucial for neuronal integrity. Loss of key autophagic components leads to progressive neurodegeneration and structural defects in neuronal synapses. However, the molecular mechanisms regulating autophagy in the brain remain elusive. Similarly, while it is widely accepted that protein turnover is required for synaptic plasticity, the contribution of autophagy to the degradation of synaptic proteins is unknown. We find that BDNF signaling via the tropomyosin receptor kinase B (TrkB) and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway suppresses autophagy in vivo. Autophagy is differentially regulated by fasting, in different brain regions. Suppression of autophagy is required for BDNF-induced synaptic plasticity and for memory enhancement, under conditions of nutritional stress. BDNF signaling suppresses autophagy in the forebrain of adult mice. Indeed, BDNF ablation in the neural lineage causes uncontrolled increase in autophagy. In turn, increased autophagy mediates the synaptic defects caused by BDNF deficiency. Thus, fasting suppresses autophagy in regions of the mouse forebrain, thereby promoting synaptic remodeling and memory through a BDNF-regulated mechanism. We identify three key remodelers of postsynaptic densities as cargo of autophagy. Our results establish autophagy as a pivotal component of BDNF signaling, which is essential for BDNF-induced synaptic plasticity. This molecular mechanism underlies behavioral adaptations that increase fitness in times of scarcity.


Asunto(s)
Autofagia/fisiología , Encéfalo/metabolismo , Animales , Encéfalo/citología , Plasticidad Neuronal , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor trkB/metabolismo , Sinapsis
18.
EMBO J ; 34(8): 1025-41, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25586377

RESUMEN

To obtain mechanistic insights into the cross talk between lipolysis and autophagy, two key metabolic responses to starvation, we screened the autophagy-inducing potential of a panel of fatty acids in human cancer cells. Both saturated and unsaturated fatty acids such as palmitate and oleate, respectively, triggered autophagy, but the underlying molecular mechanisms differed. Oleate, but not palmitate, stimulated an autophagic response that required an intact Golgi apparatus. Conversely, autophagy triggered by palmitate, but not oleate, required AMPK, PKR and JNK1 and involved the activation of the BECN1/PIK3C3 lipid kinase complex. Accordingly, the downregulation of BECN1 and PIK3C3 abolished palmitate-induced, but not oleate-induced, autophagy in human cancer cells. Moreover, Becn1(+/-) mice as well as yeast cells and nematodes lacking the ortholog of human BECN1 mounted an autophagic response to oleate, but not palmitate. Thus, unsaturated fatty acids induce a non-canonical, phylogenetically conserved, autophagic response that in mammalian cells relies on the Golgi apparatus.


Asunto(s)
Autofagia/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Beclina-1 , Caenorhabditis elegans , Células Cultivadas , Femenino , Células HeLa , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ácido Oléico/farmacología , Ácido Palmítico/farmacología , Saccharomyces cerevisiae , Regulación hacia Arriba/efectos de los fármacos
19.
Adv Exp Med Biol ; 1178: 227-245, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31493230

RESUMEN

The cytoskeleton consists of filamentous protein polymers that form organized structures, contributing to a multitude of cell life aspects. It includes three types of polymers: the actin microfilaments, the microtubules and the intermediate filaments. Decades of research have implicated the cytoskeleton in processes that regulate cellular and organismal aging, as well as neurodegeneration associated with injury or neurodegenerative disease, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, or Charcot Marie Tooth disease. Here, we provide a brief overview of cytoskeletal structure and function, and discuss experimental evidence linking cytoskeletal function and dynamics with aging and neurodegeneration.


Asunto(s)
Envejecimiento , Citoesqueleto , Enfermedades Neurodegenerativas , Envejecimiento/patología , Citoesqueleto/química , Citoesqueleto/metabolismo , Humanos , Enfermedades Neurodegenerativas/patología
20.
Biol Chem ; 399(7): 723-739, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29476663

RESUMEN

Mitochondria are critical to tissues and organs characterized by high-energy demands, such as the nervous system. They provide essential energy and metabolites, and maintain Ca2+ balance, which is imperative for proper neuronal function and development. Emerging findings further underline the role of mitochondria in neurons. Technical advances in the last decades made it possible to investigate key mechanisms in neuronal development and the contribution of mitochondria therein. In this article, we discuss the latest findings relevant to the involvement of mitochondria in neuronal development, placing emphasis on mitochondrial metabolism and dynamics. In addition, we survey the role of mitochondrial energy metabolism and Ca2+ homeostasis in proper neuronal function, and the involvement of mitochondria in axon myelination.


Asunto(s)
Mitocondrias/metabolismo , Neuronas/metabolismo , Animales , Calcio/metabolismo , Metabolismo Energético , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA