Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Exp Bot ; 65(2): 419-28, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24453226

RESUMEN

C5 volatile compounds, derived from fatty acids, are among the most important contributors to consumer liking of fresh tomatoes. Despite their important roles in flavour, the genes responsible for C5 volatile synthesis have yet to be identified. This work shows that their synthesis is catalysed in part by a 13-lipoxygenase (LOX), TomloxC, the same enzyme responsible for synthesis of C6 volatiles. C5 synthesis is independent of hydroperoxide lyase (HPL); moreover, HPL knockdown significantly increased C5 volatile synthesis. This LOX-dependent, HPL-independent pathway functions in both fruits and leaves. Synthesis of C5 volatiles increases in leaves following mechanical wounding but does not increase in response to infection with Xanthomonas campestris pv. vesicatoria. Large reductions in C5 and C6 volatiles in antisense TomloxC knockdown plants were observed but those reductions did not alter the development of disease symptoms, indicating that these volatiles do not have an important defensive function against this bacterial pathogen.


Asunto(s)
Lipooxigenasa/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Gusto , Compuestos Orgánicos Volátiles/metabolismo , Vías Biosintéticas , Ciclopentanos/metabolismo , Regulación hacia Abajo/genética , Frutas/enzimología , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Ácido Linoleico/metabolismo , Lipooxigenasa/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Xanthomonas/fisiología , Ácido alfa-Linolénico/química , Ácido alfa-Linolénico/metabolismo
2.
Plant Cell ; 23(7): 2738-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21750236

RESUMEN

Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and ¹³C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles.


Asunto(s)
Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Aminoácidos Dicarboxílicos/química , Aminoácidos Dicarboxílicos/metabolismo , Ácidos Ciclohexanocarboxílicos/química , Ácidos Ciclohexanocarboxílicos/metabolismo , Ciclohexenos/química , Ciclohexenos/metabolismo , Frutas/química , Frutas/genética , Humanos , Solanum lycopersicum/química , Redes y Vías Metabólicas/genética , Análisis por Micromatrices , Datos de Secuencia Molecular , Estructura Molecular , Petunia/genética , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/metabolismo , Filogenia , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transaminasas/clasificación , Transaminasas/genética , Transaminasas/metabolismo , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
3.
Plant J ; 69(6): 1043-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22103597

RESUMEN

O-methyltransferases (OMT) are important enzymes that are responsible for the synthesis of many small molecules, which include lignin monomers, flavonoids, alkaloids, and aroma compounds. One such compound is guaiacol, a small volatile molecule with a smoky aroma that contributes to tomato flavor. Little information is known about the pathway and regulation of synthesis of guaiacol. One possible route for synthesis is via catechol methylation. We identified a tomato O-methyltransferase (CTOMT1) with homology to a Nicotiana tabacum catechol OMT. CTOMT1 was cloned from Solanum lycopersicum cv. M82 and expressed in Escherichia coli. Recombinant CTOMT1 enzyme preferentially methylated catechol, producing guaiacol. To validate the in vivo function of CTOMT1, gene expression was either decreased or increased in transgenic S. lycopersicum plants. Knockdown of CTOMT1 resulted in significantly reduced fruit guaiacol emissions. CTOMT1 overexpression resulted in slightly increased fruit guaiacol emission, which suggested that catechol availability might limit guaiacol production. To test this hypothesis, wild type (WT) and CTOMT1 that overexpress tomato pericarp discs were supplied with exogenously applied catechol. Guaiacol production increased in both WT and transgenic fruit discs, although to a much greater extent in CTOMT1 overexpressing discs. Finally, we identified S. pennellii introgression lines with increased guaiacol content and higher expression of CTOMT1. These lines also showed a trend toward lower catechol levels. Taken together, we concluded that CTOMT1 is a catechol-O-methyltransferase that produces guaiacol in tomato fruit.


Asunto(s)
Catecol O-Metiltransferasa/metabolismo , Aromatizantes/metabolismo , Guayacol/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Catecol O-Metiltransferasa/genética , Catecoles/metabolismo , Clonación Molecular , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Frutas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Metilación , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Sitios de Carácter Cuantitativo , Ácido Salicílico/metabolismo , Especificidad por Sustrato
4.
Plant J ; 62(1): 113-23, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20070566

RESUMEN

Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-methyltransferases. In order to elaborate the mechanism of MeSA synthesis in tomato, we screened a set of O-methyltransferases for activity against multiple substrates. An enzyme that specifically catalyzes methylation of SA, SlSAMT, as well as enzymes that act upon jasmonic acid and indole-3-acetic acid were identified. Analyses of transgenic over- and under-producing lines validated the function of SlSAMT in vivo. The SlSAMT gene was mapped to a position near the bottom of chromosome 9. Analysis of MeSA emissions from an introgression population derived from a cross with Solanum pennellii revealed a quantitative trait locus (QTL) linked to higher fruit methyl salicylate emissions. The higher MeSA emissions associate with significantly higher SpSAMT expression, consistent with SAMT gene expression being rate limiting for ripening-associated MeSA emissions. Transgenic plants that constitutively over-produce MeSA exhibited only slightly delayed symptom development following infection with the disease-causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). Unexpectedly, pathogen-challenged leaves accumulated significantly higher levels of SA as well as glycosylated forms of SA and MeSA, indicating a disruption in control of the SA-related metabolite pool. Taken together, the results indicate that SlSAMT is critical for methyl salicylate synthesis and methyl salicylate, in turn, likely has an important role in controlling SA synthesis.


Asunto(s)
Metiltransferasas/metabolismo , Salicilatos/metabolismo , Solanum lycopersicum/enzimología , Mapeo Cromosómico , Clonación Molecular , Solanum lycopersicum/genética , Metiltransferasas/genética , Filogenia , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , ARN de Planta/genética , Compuestos Orgánicos Volátiles/metabolismo
5.
Plant Physiol ; 153(3): 925-36, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20435740

RESUMEN

Branched-chain amino acids (BCAAs) are synthesized in plants from branched-chain keto acids, but their metabolism is not completely understood. The interface of BCAA metabolism lies with branched-chain aminotransferases (BCAT) that catalyze both the last anabolic step and the first catabolic step. In this study, six BCAT genes from the cultivated tomato (Solanum lycopersicum) were identified and characterized. SlBCAT1, -2, -3, and -4 are expressed in multiple plant tissues, while SlBCAT5 and -6 were undetectable. SlBCAT1 and -2 are located in the mitochondria, SlBCAT3 and -4 are located in chloroplasts, while SlBCAT5 and -6 are located in the cytosol and vacuole, respectively. SlBCAT1, -2, -3, and -4 were able to restore growth of Escherichia coli BCAA auxotrophic cells, but SlBCAT1 and -2 were less effective than SlBCAT3 and -4 in growth restoration. All enzymes were active in the forward (BCAA synthesis) and reverse (branched-chain keto acid synthesis) reactions. SlBCAT3 and -4 exhibited a preference for the forward reaction, while SlBCAT1 and -2 were more active in the reverse reaction. While overexpression of SlBCAT1 or -3 in tomato fruit did not significantly alter amino acid levels, an expression quantitative trait locus on chromosome 3, associated with substantially higher expression of Solanum pennellii BCAT4, did significantly increase BCAA levels. Conversely, antisense-mediated reduction of SlBCAT1 resulted in higher levels of BCAAs. Together, these results support a model in which the mitochondrial SlBCAT1 and -2 function in BCAA catabolism while the chloroplastic SlBCAT3 and -4 function in BCAA synthesis.


Asunto(s)
Familia de Multigenes , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Transaminasas/genética , Aminoácidos de Cadena Ramificada/biosíntesis , Aminoácidos de Cadena Ramificada/química , Vías Biosintéticas , Cromatografía Líquida de Alta Presión , Clonación Molecular , ADN Complementario/genética , Escherichia coli/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Endogamia , Cinética , Especificidad de Órganos/genética , Mapeo Físico de Cromosoma , Plantas Modificadas Genéticamente , Transporte de Proteínas , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/enzimología , Transaminasas/metabolismo
6.
J Exp Bot ; 60(1): 325-37, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19088332

RESUMEN

The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools.


Asunto(s)
Frutas/química , Sitios de Carácter Cuantitativo , Solanum lycopersicum/química , Carotenoides/genética , Carotenoides/metabolismo , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/clasificación , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Filogenia , Gusto , Volatilización
7.
Plant Biotechnol J ; 6(3): 295-300, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18086233

RESUMEN

Tomato is an economically important crop and a significant dietary source of important phytochemicals, such as carotenoids and flavonoids. Although it has been known for many years that the plant hormone ethylene is essential for the ripening of climacteric fruits, its role in fruit growth and maturation is much less well understood. In this study, data are presented which indicate that fruit-specific suppression of the ethylene receptor LeETR4 causes early ripening, whereas fruit size, yield and flavour-related chemical composition are largely unchanged. Early fruit ripening is a highly desirable and valuable trait, and the approach demonstrated here should be applicable to any fruit species requiring ethylene to ripen. These results demonstrate that ethylene receptors probably act as biological clocks regulating the onset of tomato fruit ripening.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Solanum lycopersicum/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Frutas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Interferencia de ARN
8.
Mol Plant ; 8(1): 153-62, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25578279

RESUMEN

Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species Solanum pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrate preferences that explain the variations observed in the volatiles. The results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of the synthesis and degradation of esters.


Asunto(s)
Solanum lycopersicum/enzimología , Solanum lycopersicum/metabolismo , Solanum/enzimología , Solanum/metabolismo , Frutas/enzimología , Frutas/metabolismo , Datos de Secuencia Molecular , Proteínas/metabolismo
9.
Mol Plant ; 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25355057

RESUMEN

Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species S. pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrates preferences that explain variations observed in the volatiles. Together, the results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of synthesis and degradation of esters.

10.
Mol Plant ; 5(2): 366-75, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22199237

RESUMEN

The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine, isoleucine, and valine. These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids. Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized, their catabolism in plants is not yet completely understood. We previously characterized the branched chain amino acid transaminase gene family in tomato, revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes. Here, we examined possible functions of the enzymes during fruit development. We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3, evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3. We quantitatively tested, via precursor and isotope feeding experiments, the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles. Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration, but also reveal that keto acids, rather than amino acids, are the likely precursors for the branched chain flavor volatiles.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Frutas/metabolismo , Solanum lycopersicum/metabolismo , Vías Biosintéticas , Respiración de la Célula , Frutas/genética , Leucina/metabolismo , Solanum lycopersicum/genética , Modelos Biológicos , Plantas Modificadas Genéticamente , Volatilización
11.
Curr Biol ; 22(11): 1035-9, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22633806

RESUMEN

Although human perception of food flavors involves integration of multiple sensory inputs, the most salient sensations are taste and olfaction. Ortho- and retronasal olfaction are particularly crucial to flavor because they provide the qualitative diversity so important to identify safe versus dangerous foods. Historically, flavor research has prioritized aroma volatiles present at levels exceeding the orthonasally measured odor threshold, ignoring the variation in the rate at which odor intensities grow above threshold. Furthermore, the chemical composition of a food in itself tells us very little about whether or not that food will be liked. Clearly, alternative approaches are needed to elucidate flavor chemistry. Here we use targeted metabolomics and natural variation in flavor-associated sugars, acids, and aroma volatiles to evaluate the chemistry of tomato fruits, creating a predictive and testable model of liking. This nontraditional approach provides novel insights into flavor chemistry, the interactions between taste and retronasal olfaction, and a paradigm for enhancing liking of natural products. Some of the most abundant volatiles do not contribute to consumer liking, whereas other less abundant ones do. Aroma volatiles make contributions to perceived sweetness independent of sugar concentration, suggesting a novel way to increase perception of sweetness without adding sugar.


Asunto(s)
Preferencias Alimentarias , Frutas/química , Solanum lycopersicum/química , Gusto , Humanos , Modelos Químicos , Plantas Modificadas Genéticamente/química , Percepción del Gusto , Compuestos Orgánicos Volátiles/química
12.
Plant J ; 51(3): 458-67, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17655616

RESUMEN

Fruit ripening in tomato requires the coordination of both developmental cues and the phytohormone ethylene. The multigene ethylene receptor family has been shown to negatively regulate ethylene signal transduction and suppress ethylene responses. Here we demonstrate that reduction in the levels of either of two family members, LeETR4 or LeETR6, causes an early-ripening phenotype. We provide evidence that the receptors are rapidly degraded in the presence of ethylene, and that degradation probably occurs through the 26S proteasome-dependent pathway. Ethylene exposure of immature fruits causes a reduction in the amount of receptor protein and earlier ripening. The results are consistent with a model in which receptor levels modulate timing of the onset of fruit ripening by measuring cumulative ethylene exposure.


Asunto(s)
Etilenos/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Solanum lycopersicum/metabolismo , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/crecimiento & desarrollo , Familia de Multigenes , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN sin Sentido , Factores de Tiempo
13.
J Exp Bot ; 57(4): 887-96, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16473892

RESUMEN

Fresh tomato fruit flavour is the sum of the interaction between sugars, acids, and a set of approximately 30 volatile compounds synthesized from a diverse set of precursors, including amino acids, lipids, and carotenoids. Some of these volatiles impart desirable qualities while others are negatively perceived. As a first step to identify the genes responsible for the synthesis of flavour-related chemicals, an attempt was made to identify loci that influence the chemical composition of ripe fruits. A genetically diverse but well-defined Solanum pennellii IL population was used. Because S. pennellii is a small green-fruited species, this population exhibits great biochemical diversity and is a rich source of genes affecting both fruit development and chemical composition. This population was used to identify multiple loci affecting the composition of chemicals related to flavour. Twenty-five loci were identified that are significantly altered in one or more of 23 different volatiles and four were altered in citric acid content. It was further shown that emissions of carotenoid-derived volatiles were directly correlated with the fruit carotenoid content. Linked molecular markers should be useful for breeding programmes aimed at improving fruit flavour. In the longer term, the genes responsible for controlling the levels of these chemicals will be important tools for understanding the complex interactions that ultimately integrate to provide the unique flavour of a tomato.


Asunto(s)
Compuestos Orgánicos/aislamiento & purificación , Solanum lycopersicum/química , Solanum lycopersicum/genética , Gusto , Carotenoides/química , Carotenoides/genética , Mapeo Cromosómico , Frutas/química , Frutas/genética , Variación Genética , Genoma de Planta , Genómica , Compuestos Orgánicos/química , Compuestos Orgánicos/clasificación , Sitios de Carácter Cuantitativo
14.
Plant J ; 40(6): 882-92, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15584954

RESUMEN

Volatile terpenoid compounds, potentially derived from carotenoids, are important components of flavor and aroma in many fruits, vegetables and ornamentals. Despite their importance, little is known about the enzymes that generate these volatiles. The tomato genome contains two closely related genes potentially encoding carotenoid cleavage dioxygenases, LeCCD1A and LeCCD1B. A quantitative reverse transcriptase-polymerase chain reaction analysis revealed that one of these two genes, LeCCD1B, is highly expressed in ripening fruit (4 days post-breaker), where it constitutes 0.11% of total RNA. Unlike the related neoxanthin cleavage dioxygenases, import assays using pea chloroplasts showed that the LeCCD1 proteins are not plastid-localized. The biochemical functions of the LeCCD1 proteins were determined by bacterial expression and in vitro assays, where it was shown that they symmetrically cleave multiple carotenoid substrates at the 9,10 (9',10') positions to produce a C14 dialdehyde and two C13 cyclohexones that vary depending on the substrate. The potential roles of the LeCCD1 genes in vivo were assessed in transgenic tomato plants constitutively expressing the LeCCD1B gene in reverse orientation. This over-expression of the antisense transcript led to 87-93% reductions in mRNA levels of both LeCCD1A and LeCCD1B in the leaves and fruits of selected lines. Transgenic plants exhibited no obvious morphological alterations. High-performance liquid chromatography analysis showed no significant modification in the carotenoid content of fruit tissue. However, volatile analysis showed a > or =50% decrease in beta-ionone (a beta-carotene-derived C13 cyclohexone) and a > or =60% decrease in geranylacetone (a C13 acyclic product likely derived from a lycopene precursor) in selected lines, implicating the LeCCD1 genes in the formation of these important flavor volatiles in vivo.


Asunto(s)
Dioxigenasas/genética , Norisoprenoides/biosíntesis , Solanum lycopersicum/genética , Terpenos/metabolismo , Cloroplastos/metabolismo , Dioxigenasas/metabolismo , Escherichia coli/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Expresión Génica , Modelos Químicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA