RESUMEN
Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.
Asunto(s)
Linfocitos T CD8-positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Acetilación , Histonas/metabolismo , Cuerpos Cetónicos , Animales , RatonesRESUMEN
Exposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress-processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS)- dura mater, arachnoid, and piamater - possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on sucrose preference behavior, dura mater expression of inflammatory markers and mast cell histology in adult male and female C57Bl/6 mice. We found that NMSEW alone does not affect sucrose preference behavior in males or females, but it increases the dura mater expression of the genes coding for mast cell protease CMA1 (cma1) and the inflammatory cytokine TNF alpha (tnf alpha) in females. When NMSEW is combined with an adult mild stress (that does not affect behavior or gene expression in NH animals) females show reduced sucrose preference and even greater increases in meningeal cma1 levels. Interestingly, systemic administration of the mast cell stabilizer Ketotifen before exposure to adult stress prevents both, reduction in sucrose preference an increases in cma1 expression in NMSEW females, but facilitates stress-induced sucrose anhedonia in NMSEW males and NH females. Finally, histological analyses showed that, compared to males, females have increased baseline activation levels of mast cells located in the transverse sinus of the dura mater, where the meningeal lymphatics run along, and that, in males and females exposed to adult stress, NMSEW increases the number of mast cells in the interparietal region of the dura mater and the levels of mast cell activation in the sagittal sinus regions of the dura mater. Together, our results indicate that ELA induces long-term meningeal immune gene changes and heightened sensitivity to adult stress-induced behavioral and meningeal immune responses and that these effects could mediated via mast cells.
Asunto(s)
Anhedonia , Mastocitos , Factores Sexuales , Estrés Psicológico , Animales , Femenino , Masculino , Presentación de Antígeno , Expresión Génica , Privación Materna , Meninges , Sacarosa , Factor de Necrosis Tumoral alfa , Ratones , Ratones Endogámicos C57BLRESUMEN
Therapeutic resistance remains a major obstacle to successful clinical management of diffuse intrinsic pontine glioma (DIPG), a high-grade pediatric tumor of the brain stem. In nearly all patients, available therapies fail to prevent progression. Innovative combinatorial therapies that penetrate the blood-brain barrier and lead to long-term control of tumor growth are desperately needed. We identified mechanisms of resistance to radiotherapy, the standard of care for DIPG. On the basis of these findings, we rationally designed a brain-penetrant small molecule, MTX-241F, that is a highly selective inhibitor of EGFR and PI3 kinase family members, including the DNA repair protein DNA-PK. Preliminary studies demonstrated that micromolar levels of this inhibitor can be achieved in murine brain tissue and that MTX-241F exhibits promising single-agent efficacy and radiosensitizing activity in patient-derived DIPG neurospheres. Its physiochemical properties include high exposure in the brain, indicating excellent brain penetrance. Because radiotherapy results in double-strand breaks that are repaired by homologous recombination (HR) and non-homologous DNA end joining (NHEJ), we have tested the combination of MTX-241F with an inhibitor of Ataxia Telangiectasia Mutated to achieve blockade of HR and NHEJ, respectively, with or without radiotherapy. When HR blockers were combined with MTX-241F and radiotherapy, synthetic lethality was observed, providing impetus to explore this combination in clinically relevant models of DIPG. Our data provide proof-of-concept evidence to support advanced development of MTX-241F for the treatment of DIPG. Future studies will be designed to inform rapid clinical translation to ultimately impact patients diagnosed with this devastating disease.
Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Niño , Ratones , Animales , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/metabolismo , Recurrencia Local de Neoplasia , Reparación del ADN , Transducción de Señal , ADN/uso terapéutico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/patologíaRESUMEN
Glucose is essential for T cell proliferation and function, yet its specific metabolic roles in vivo remain poorly defined. Here, we identify glycosphingolipid (GSL) biosynthesis as a key pathway fueled by glucose that enables CD8+ T cell expansion and cytotoxic function in vivo. Using 13C-based stable isotope tracing, we demonstrate that CD8+ effector T cells use glucose to synthesize uridine diphosphate-glucose (UDP-Glc), a precursor for glycogen, glycan, and GSL biosynthesis. Inhibiting GSL production by targeting the enzymes UGP2 or UGCG impairs CD8+ T cell expansion and cytolytic activity without affecting glucose-dependent energy production. Mechanistically, we show that glucose-dependent GSL biosynthesis is required for plasma membrane lipid raft integrity and aggregation following TCR stimulation. Moreover, UGCG-deficient CD8+ T cells display reduced granzyme expression and tumor control in vivo. Together, our data establish GSL biosynthesis as a critical metabolic fate of glucose-independent of energy production-required for CD8+ T cell responses in vivo.
RESUMEN
Therapeutic resistance remains a major obstacle to preventing progression of H3K27M-altered Diffuse Midline Glioma (DMG). Resistance is driven in part by ALDH-positive cancer stem cells (CSC), with high ALDH1A3 expression observed in H3K27M-mutant DMG biopsies. We hypothesized that ALDH-mediated stemness and resistance may in part be driven by the oncohistone itself. Upon deletion of H3K27M, ALDH1A3 expression decreased dramatically and was accompanied by a gain in astrocytic marker expression and a loss of neurosphere forming potential, indicative of differentiation. Here we show that the oncohistone regulates histone acetylation through ALDH1A3 in a Wnt-dependent manner and that loss of H3K27M expression results in sensitization of DMGs to radiotherapy. The observed elevated Wnt signaling in H3K27M-altered DMG likely stems from a dramatic suppression of mRNA and protein expression of the Wnt inhibitor EYA4 driven by the oncohistone. Thus, our findings identify EYA4 as a bona fide tumor suppressor in DMG that upon suppression, results in aberrant Wnt signaling to orchestrate stemness and differentiation. Future studies will explore whether overexpression of EYA4 in DMG can impede growth and invasion. In summary, we have gained mechanistic insight into H3K27M-mediated regulation of cancer stemness and differentiation, which provides rationale for exploring new therapeutic targets for DMG.