Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Gels ; 10(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38667642

RESUMEN

Inks based on soybean protein isolate (SPI) were developed and their formulations were optimized as a function of the ink heat treatment and the content of other biopolymers to assess the effects of protein-polysaccharides and protein-protein interactions. First, the rheological behavior of the inks was analyzed in relation to the polyvinyl alcohol (PVA) concentration employed (20, 25, and 30 wt%) and, as a result of the analysis, the ink with 25 wt% PVA was selected. Additionally, sodium alginate (SA) and gelatin (GEL) were added to the formulations to improve the viscoelastic properties of the inks and the effect of the SA or GEL concentrations (1, 2, and 3 wt%) was studied. All inks showed shear thinning behavior and self-supporting abilities. Among all the 3D printed scaffolds, those with higher SA (3 wt%) or GEL (2 and 3 wt%) content showed higher shape fidelity and were selected for further characterization. Texture profile analysis demonstrated that the scaffolds prepared with previously heat-treated inks containing 3 wt% GEL showed the highest strength. Additionally, these scaffolds showed a higher water-uptake capacity profile.

2.
Int J Bioprint ; 9(5): 756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37555083

RESUMEN

Surgeons use different medical devices in the surgery, such as patient-specific anatomical models, cutting and positioning guides, or implants. These devices must be sterilized before being used in the operation room. There are many sterilization processes available, with autoclave, hydrogen peroxide, and ethylene oxide being the most common in hospital settings. Each method has both advantages and disadvantages in terms of mechanics, chemical interaction, and post-treatment accuracy. The aim of the present study is to evaluate the dimensional and mechanical effect of the most commonly used sterilization techniques available in clinical settings, i.e., Autoclave 121, Autoclave 134, and hydrogen peroxide (HPO), on 11 of the most used 3D-printed materials fabricated using additive manufacturing technologies. The results showed that the temperature (depending on the sterilization method) and the exposure time to that temperature influence not only the mechanical behavior but also the original dimensioning planned on the 3D model. Therefore, HPO is a better overall option for most of the materials evaluated. Finally, based on the results of the study, a recommendation guide on sterilization methods per material, technology, and clinical application is presented.

3.
Gels ; 9(4)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37102951

RESUMEN

Background: Pre-surgical simulation-based training with three-dimensional (3D) models has been intensively developed in complex surgeries in recent years. This is also the case in liver surgery, although with fewer reported examples. The simulation-based training with 3D models represents an alternative to current surgical simulation methods based on animal or ex vivo models or virtual reality (VR), showing reported advantages, which makes the development of realistic 3D-printed models an option. This work presents an innovative, low-cost approach for producing patient-specific 3D anatomical models for hands-on simulation and training. Methods: The article reports three paediatric cases presenting complex liver tumours that were transferred to a major paediatric referral centre for treatment: hepatoblastoma, hepatic hamartoma and biliary tract rhabdomyosarcoma. The complete process of the additively manufactured liver tumour simulators is described, and the different steps for the correct development of each case are explained: (1) medical image acquisition; (2) segmentation; (3) 3D printing; (4) quality control/validation; and (5) cost. A digital workflow for liver cancer surgical planning is proposed. Results: Three hepatic surgeries were planned, with 3D simulators built using 3D printing and silicone moulding techniques. The 3D physical models showed highly accurate replications of the actual condition. Additionally, they proved to be more cost-effective in comparison with other models. Conclusions: It is demonstrated that it is possible to manufacture accurate and cost-effective 3D-printed soft surgical planning simulators for treating liver cancer. The 3D models allowed for proper pre-surgical planning and simulation training in the three cases reported, making it a valuable aid for surgeons.

4.
Bioengineering (Basel) ; 11(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38247908

RESUMEN

The printing and manufacturing of anatomical 3D models has gained popularity in complex surgical cases for surgical planning, simulation and training, the evaluation of anatomical relations, medical device testing and patient-professional communication. 3D models provide the haptic feedback that Virtual or Augmented Reality (VR/AR) cannot provide. However, there are many technologies and strategies for the production of 3D models. Therefore, the aim of the present study is to show and compare eight different strategies for the manufacture of surgical planning and training prototypes. The eight strategies for creating complex abdominal oncological anatomical models, based on eight common pediatric oncological cases, were developed using four common technologies (stereolithography (SLA), selectie laser sinterning (SLS), fused filament fabrication (FFF) and material jetting (MJ)) along with indirect and hybrid 3D printing methods. Nine materials were selected for their properties, with the final models assessed for application suitability, production time, viscoelastic mechanical properties (shore hardness and elastic modulus) and cost. The manufacturing and post-processing of each strategy is assessed, with times ranging from 12 h (FFF) to 61 h (hybridization of FFF and SLS), as labor times differ significantly. Cost per model variation is also significant, ranging from EUR 80 (FFF) to EUR 600 (MJ). The main limitation is the mimicry of physiological properties. Viscoelastic properties and the combination of materials, colors and textures are also substantially different according to the strategy and the intended use. It was concluded that MJ is the best overall option, although its use in hospitals is limited due to its cost. Consequently, indirect 3D printing could be a solid and cheaper alternative.

5.
J Funct Biomater ; 13(3)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36135590

RESUMEN

Three-dimensionally printed metals and polymers have been widely used and studied in medical applications, yet ceramics also require attention. Ceramics are versatile materials thanks to their excellent properties including high mechanical properties and hardness, good thermal and chemical behavior, and appropriate, electrical, and magnetic properties, as well as good biocompatibility. Manufacturing complex ceramic structures employing conventional methods, such as ceramic injection molding, die pressing or machining is extremely challenging. Thus, 3D printing breaks in as an appropriate solution for complex shapes. Amongst the different ceramics, bioinert ceramics appear to be promising because of their physical properties, which, for example, are similar to those of a replaced tissue, with minimal toxic response. In this way, this review focuses on the different medical applications that can be achieved by 3D printing of bioinert ceramics, as well as on the latest advances in the 3D printing of bioinert ceramics. Moreover, an in-depth comparison of the different AM technologies used in ceramics is presented to help choose the appropriate methods depending on the part geometry.

6.
Polymers (Basel) ; 14(13)2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35808799

RESUMEN

Three-dimensional printing is revolutionizing the development of scaffolds due to their rapid-prototyping characteristics. One of the most used techniques is fused filament fabrication (FFF), which is fast and compatible with a wide range of polymers, such as PolyLactic Acid (PLA). Mechanical properties of the 3D printed polymeric scaffolds are often weak for certain applications. A potential solution is the development of composite materials. In the present work, metal-PLA composites have been tested as a material for 3D printing scaffolds. Three different materials were tested: copper-filled PLA, bronze-filled PLA, and steel-filled PLA. Disk-shaped samples were printed with linear infill patterns and line spacing of 0.6, 0.7, and 0.8 mm, respectively. The porosity of the samples was measured from cross-sectional images. Biocompatibility was assessed by culturing Human Bone Marrow-Derived Mesenchymal Stromal on the surface of the printed scaffolds. The results showed that, for identical line spacing value, the highest porosity corresponded to bronze-filled material and the lowest one to steel-filled material. Steel-filled PLA polymers showed good cytocompatibility without the need to coat the material with biomolecules. Moreover, human bone marrow-derived mesenchymal stromal cells differentiated towards osteoblasts when cultured on top of the developed scaffolds. Therefore, it can be concluded that steel-filled PLA bioprinted parts are valid scaffolds for bone tissue engineering.

7.
Gels ; 8(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35049575

RESUMEN

With the currently available materials and technologies it is difficult to mimic the mechanical properties of soft living tissues. Additionally, another significant problem is the lack of information about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol -PVA-, Phytagel -PHY- and methacrylate gelatine -GelMA-) were tested regarding their mechanical properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical response were measured. It was seen that there was a significant difference among the results for the different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being softer or harder. With all this information in mind, a correlation between the mechanical properties of the organs and the different materials was performed. The next conclusions were drawn: (1) to mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic any of the studied tissues.

8.
J Biomater Appl ; 36(3): 460-473, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33596707

RESUMEN

Chitosan and gelatin have been extensively used in tissue engineering for a wide range of different applications, such as wound healing or bone regeneration, due to their advantages: excellent biocompatibility (promoting cell adhesion and proliferation), low price and biodegradability. Nonetheless, their main drawback is that they have poor mechanical properties, consequently restricting their use in bone tissue engineering. In previous studies, both materials were cross-linked, with added calcium minerals, which led to an improvement in both mechanical and biological properties. Therefore, this study carries out a mechanical and biological characterization of mineral-hydrogel scaffolds in order to find the best compositions. Different proportions of calcium compounds (CaCO3 and CaHPO4) are used to make up between 20% and 30% of the minerals used in a mineral-hydrogel mix. This addition of minerals enhances not only the mechanical properties, but also the biological ones. On the one hand, the higher the amount of minerals added to the composition, the better the mechanical properties obtained. Additionally, as the proportion of CaCO3 in comparison with CaHPO4 rises, the mechanical properties improve. On the other hand, both cell proliferation and mineralization are improved with the addition of calcium minerals.


Asunto(s)
Carbonato de Calcio/química , Fosfatos de Calcio/química , Quitosano/química , Gelatina/química , Hidrogeles/química , Andamios del Tejido/química , Línea Celular , Humanos , Osteoblastos/citología , Ingeniería de Tejidos
9.
Nanomaterials (Basel) ; 11(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34835706

RESUMEN

The main aim of the present paper is to study and analyze surface roughness, shrinkage, porosity, and mechanical strength of dense yttria-stabilized zirconia (YSZ) samples obtained by means of the extrusion printing technique. In the experiments, both print speed and layer height were varied, according to a 22 factorial design. Cuboid samples were defined, and three replicates were obtained for each experiment. After sintering, the shrinkage percentage was calculated in width and in height. Areal surface roughness, Sa, was measured on the lateral walls of the cuboids, and total porosity was determined by means of weight measurement. The compressive strength of the samples was determined. The lowest Sa value of 9.4 µm was obtained with low layer height and high print speed. Shrinkage percentage values ranged between 19% and 28%, and porosity values between 12% and 24%, depending on the printing conditions. Lowest porosity values correspond to low layer height and low print speed. The same conditions allow obtaining the highest average compressive strength value of 176 MPa, although high variability was observed. For this reason, further research will be carried out about mechanical strength of ceramic 3D printed samples. The results of this work will help choose appropriate printing conditions extrusion processes for ceramics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA