Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Radiol Med ; 125(2): 157-164, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31591701

RESUMEN

PURPOSE: MR-guided radiotherapy (MRgRT) relies on the daily assignment of a relative electron density (RED) map to allow the fraction specific dose calculation. One approach to assign the RED map consists of segmenting the daily magnetic resonance image into five different density levels and assigning a RED bulk value to each level to generate a synthetic CT (sCT). The aim of this study is to evaluate the dose calculation accuracy of this approach for applications in MRgRT. METHODS: A planning CT (pCT) was acquired for 26 patients with abdominal and pelvic lesions and segmented in five levels similar to an online approach: air, lung, fat, soft tissue and bone. For each patient, the median RED value was calculated for fat, soft tissue and bone. Two sCTs were generated assigning different bulk values to the segmented levels on pCT: The sCTICRU uses the RED values recommended by ICRU46, and the sCTtailor uses the median patient-specific RED values. The same treatment plan was calculated on two the sCTs and the pCT. The dose calculation accuracy was investigated in terms of gamma analysis and dose volume histogram parameters. RESULTS: Good agreement was found between dose calculated on sCTs and pCT (gamma passing rate 1%/1 mm equal to 91.2% ± 6.9% for sCTICRU and 93.7% ± 5.3% b or sCTtailor). The mean difference in estimating V95 (PTV) was equal to 0.2% using sCTtailor and 1.2% using sCTICRU, respect to pCT values CONCLUSIONS: The bulk sCT guarantees a high level of dose calculation accuracy also in presence of magnetic field, making this approach suitable to MRgRT. This accuracy can be improved by using patient-specific RED values.


Asunto(s)
Abdomen/diagnóstico por imagen , Imagen por Resonancia Magnética , Pelvis/diagnóstico por imagen , Radioterapia Guiada por Imagen , Tomografía Computarizada por Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
2.
J Appl Clin Med Phys ; 20(9): 20-30, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31444952

RESUMEN

PURPOSE: Magnetic resonance-guided adaptive radiotherapy (MRgART) is considered a promising resource for pancreatic cancer, as it allows to online modify the dose distribution according to daily anatomy. This study aims to compare the dosimetric performance of a simplified optimizer implemented on a MR-Linac treatment planning system (TPS) with those obtained using an advanced optimizer implemented on a conventional Linac. METHODS: Twenty patients affected by locally advanced pancreatic cancer (LAPC) were considered. Gross tumor volume (GTV) and surrounding organ at risks (OARs) were contoured on the average 4DCT scan. Planning target volume was generated from GTV by adding an isotropic 3 mm margin and excluding overlap areas with OARs. Treatment plans were generated by using the simple optimizer for the MR-Linac in intensity-modulated radiation therapy (IMRT) and the advanced optimizer for conventional Linac in IMRT and volumetric modulated arc therapy (VMAT) technique. Prescription dose was 40 Gy in five fractions. The dosimetric comparison was performed on target coverage, dosimetric indicators, and low dose diffusion. RESULTS: The simplified optimizer of MR-Linac generated clinically acceptable plans in 80% and optimal plans in 55% of cases. The number of clinically acceptable plans obtained using the advanced optimizer of the conventional Linac with IMRT was the same of MR-Linac, but the percentage of optimal plans was higher (65%). Using the VMAT technique, it is possible to obtain clinically acceptable plan in 95% and optimal plans in 90% of cases. The advanced optimizer combined with VMAT technique ensures higher target dose homogeneity and minor diffusion of low doses, but its actual optimization time is not suitable for MRgART. CONCLUSION: Simplified optimization solutions implemented in the MR-Linac TPS allows to elaborate in most of cases treatment plans dosimetrically comparable with those obtained by using an advanced optimizer. A superior treatment plan quality is possible using the VMAT technique that could represent a breakthrough for the MRgART if the modern advancements will lead to shorter optimization times.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias Pancreáticas/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/normas , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Aceleradores de Partículas/instrumentación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
3.
J Appl Clin Med Phys ; 20(6): 194-198, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31055870

RESUMEN

The case of a 50-year-old man affected by a rhabdomiosarcoma metastatic lesion in the left flank Is reported. The patient was addressed to 50.4 Gy radiotherapy with concomitant chemotherapy in order to locally control the lesion. A Tri-60-Co magnetic resonance hybrid radiotherapy unit was used for treatment delivery and a respiratory gating protocol was applied for the different breathing phases (Free Breathing, Deep Inspiration Breath Hold and Final Expiration Breath Hold). Three intensity modulated radiation therapy (IMRT) plans were calculated and Final Expiration Breath Hold plan was finally selected due to the absence of PTV coverage differences and better organs at risk sparing (i.e. kidneys). This case report suggests that organs at risk avoidance with MRI-guided respiratory-gated Radiotherapy is feasible and particularly advantageous whenever sparing the organs at risk is of utmost dosimetric or clinical importance.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Rabdomiosarcoma/radioterapia , Neoplasias Torácicas/radioterapia , Contencion de la Respiración , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Rabdomiosarcoma/patología , Neoplasias Torácicas/secundario
4.
Radiol Med ; 124(2): 145-153, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30374650

RESUMEN

The aim of this study was to evaluate the variation of radiomics features, defined as "delta radiomics", in patients undergoing neoadjuvant radiochemotherapy (RCT) for rectal cancer treated with hybrid magnetic resonance (MR)-guided radiotherapy (MRgRT). The delta radiomics features were then correlated with clinical complete response (cCR) outcome, to investigate their predictive power. A total of 16 patients were enrolled, and 5 patients (31%) showed cCR at restaging examinations. T2*/T1 MR images acquired with a hybrid 0.35 T MRgRT unit were considered for this analysis. An imaging acquisition protocol of 6 MR scans per patient was performed: the first MR was acquired at first simulation (t0) and the remaining ones at fractions 5, 10, 15, 20 and 25. Radiomics features were extracted from the gross tumour volume (GTV), and each feature was correlated with the corresponding delivered dose. The variations of each feature during treatment were quantified, and the ratio between the values calculated at different dose levels and the one extracted at t0 was calculated too. The Wilcoxon-Mann-Whitney test was performed to identify the features whose variation can be predictive of cCR, assessed with a MR acquired 6 weeks after RCT and digital examination. The most predictive feature ratios in cCR prediction were the L_least and glnu ones, calculated at the second week of treatment (22 Gy) with a p value = 0.001. Delta radiomics approach showed promising results and the quantitative analysis of images throughout MRgRT treatment can successfully predict cCR offering an innovative personalized medicine approach to rectal cancer treatment.


Asunto(s)
Adenocarcinoma/radioterapia , Imagen por Resonancia Magnética/métodos , Medicina de Precisión , Radioterapia Guiada por Imagen/métodos , Neoplasias del Recto/radioterapia , Adenocarcinoma/patología , Anciano , Anciano de 80 o más Años , Biopsia , Quimioradioterapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias del Recto/patología , Resultado del Tratamiento , Carga Tumoral
5.
PLoS One ; 16(1): e0245305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33449952

RESUMEN

PURPOSE: To evaluate the performance of eleven Knowledge-Based (KB) models for planning optimization (RapidPlantm (RP), Varian) of Volumetric Modulated Arc Therapy (VMAT) applied to whole breast comprehensive of nodal stations, internal mammary and/or supraclavicular regions. METHODS AND MATERIALS: Six RP models have been generated and trained based on 120 VMAT plans data set with different criteria. Two extra-structures were delineated: a PTV for the optimization and a ring structure. Five more models, twins of the previous models, have been created without the need of these structures. RESULTS: All models were successfully validated on an independent cohort of 40 patients, 30 from the same institute that provided the training patients and 10 from an additional institute, with the resulting plans being of equal or better quality compared with the clinical plans. The internal validation shows that the models reduce the heart maximum dose of about 2 Gy, the mean dose of about 1 Gy and the V20Gy of 1.5 Gy on average. Model R and L together with model B without optimization structures ensured the best outcomes in the 20% of the values compared to other models. The external validation observed an average improvement of at least 16% for the V5Gy of lungs in RP plans. The mean heart dose and for the V20Gy for lung IPSI were almost halved. The models reduce the maximum dose for the spinal canal of more than 2 Gy on average. CONCLUSIONS: All KB models allow a homogeneous plan quality and some dosimetric gains, as we saw in both internal and external validation. Sub-KB models, developed by splitting right and left breast cases or including only whole breast with locoregional lymph nodes, have shown good performances, comparable but slightly worse than the general model. Finally, models generated without the optimization structures, performed better than the original ones.


Asunto(s)
Neoplasias de la Mama/radioterapia , Ganglios Linfáticos/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada , Femenino , Humanos , Ganglios Linfáticos/patología , Glándulas Mamarias Humanas/efectos de la radiación , Mediastino/efectos de la radiación , Órganos en Riesgo , Radiación Ionizante , Dosificación Radioterapéutica , Radioterapia Adyuvante , Estudios Retrospectivos
6.
Radiother Oncol ; 129(3): 456-462, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30144955

RESUMEN

INTRODUCTION: Aim of this study was to investigate the ability of pre-treatment four dimensional computed tomography (4DCT) to capture respiratory-motion observed in thoracic and abdominal lesions during treatment. Treatment motion was acquired using full-treatment cine-MR acquisitions. Results of this analysis were compared to the ability of 30 seconds (s) cine Magnetic Resonance (MR) to estimate the same parameters. METHODS: A 4DCT and 30 s cine-MR (ViewRay, USA) were acquired on the simulation day for 7 thoracic and 13 abdominal lesions. Mean amplitude, intra- and inter-fraction amplitude variability, and baseline drift were extracted from the full treatment data acquired by 2D cine-MR, and correlated to the motion on pre-treatment 30 s cine-MR and 4DCT. Using the full treatment data, safety margins on the ITV, necessary to account for all motion variability from 4DCT observed during treatment, were calculated. Mean treatment amplitudes were 2 ±â€¯1 mm and 5 ±â€¯3 mm in the anteroposterior (AP) and craniocaudal (CC) direction, respectively. Differences between mean amplitude during treatment and amplitude on 4DCT or during 30 s cine-MR were not significant, but 30 s cine-MR was more accurate than 4DCT. Intra-fraction amplitude variability was positively correlated with both 30 s cine-MR and 4DCT amplitude. Inter-fraction amplitude variability was minimal. RESULTS: Mean baseline drift over all fractions and patients equalled 1 ±â€¯1 mm in both CC and AP direction, but drifts per fraction up to 16 mm (CC) and 12 mm (AP) were observed. Margins necessary on the ITV ranged from 0 to 8 mm in CC and 0 to 5 mm in AP direction. Neither amplitude on 4DCT nor during 30 s cine MR is correlated to the magnitude of drift or the necessary margins in both directions. CONCLUSION: Lesions moving with small amplitude show limited amplitude variability throughout treatment, making passive motion management strategies seem adequate. However, other variations such as baseline drifts and shifts still cause significant geometrical uncertainty, favouring real-time monitoring and an active approach for all lesions influenced by respiratory motion.


Asunto(s)
Neoplasias Abdominales/radioterapia , Neoplasias Torácicas/radioterapia , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Neoplasias Renales/radioterapia , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Imagen por Resonancia Cinemagnética , Espectroscopía de Resonancia Magnética , Movimiento (Física) , Movimiento/fisiología , Neoplasias Pancreáticas/radioterapia , Posicionamiento del Paciente , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Respiración
7.
Phys Med ; 53: 80-85, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30241758

RESUMEN

PURPOSE: Aim of this study is to experimental evaluate the impact of a 0.35 T transverse magnetic field on dose distribution in presence of tissue-air and tissue-lung interfaces. METHODS: The investigation was carried out using MRIdian (ViewRay, Cleveland, Ohio) and it consisted of comparing experimental measurements performed by Gafchromic EBT3 film dosimetry, to Montecarlo simulations, carried out in the presence and, as well as, the absence of the magnetic field. A preliminary dose calibration was planned on MRIdian, arranging 3 × 3 cm2 film pieces in a water slab phantom and exposing them at different beam-on times, in a dose range equal to 0.1-12.1 Gy. All experimental measurements were then carried out using the calibrated films and delivering one single beam orthogonally to three different phantoms: without inhomogeneity, with an air gap and with a lung inhomogeneity. The dose distributions measured by EBT3 films in presence of magnetic field were compared to those calculated in the presence and, as well as, the absence of the magnetic field, in terms of gamma analysis. A quantification of electron return effect (ERE) was also performed. RESULTS: All the tested plans considering the magnetic field show a gamma-passing rate higher than 98% for 3%/3 mm gamma analysis. In presence of tissue-air interface, the electron return effect causes an over-dosage of +31.9% at the first interface and an under-dosage of -33% at the second interface. The dosimetric variations in presence of tissue-lung interface results to be smaller (+0.8% first interface, -1.3% second interface). CONCLUSION: The impact of 0.35 T magnetic field is not negligible and it can be effectively modelled by the Montecarlo dose calculation platform available in the MRIdian TPS.


Asunto(s)
Campos Magnéticos , Dosis de Radiación , Radioterapia Guiada por Imagen , Calibración , Dosificación Radioterapéutica
8.
Artículo en Inglés | MEDLINE | ID: mdl-32095572

RESUMEN

INTRODUCTION: Aim of this paper is to investigate the plan quality of a tri-Co-60 MRI-Hybrid system for intensity-modulated radiation therapy (IMRT) in patients affected by locally advanced rectal cancer (LARC) undergoing neo-adjuvant radiotherapy. MATERIALS AND METHODS: Ten consecutive LARC patients were selected. Tri-Co-60 step and shoot IMRT plans were generated simulating the presence of the magnetic field (Bon) or not (Boff) with the dedicated treatment planning system (TPS).The total planned dose was 45 Gy in 25 fractions to the mesorectum and the pelvic nodes (planning target volume 2, PTV2) and 55 Gy to the tumor and correspondent mesorectum (PTV1) through simultaneous integrated boost (SIB). Tri-Co-60 IMRT plans were compared with Volumetric Modulated Arc Therapy (VMAT) and IMRT plans for Linear Accelerator (Linac). RESULTS: Bon and Boff tri-Co-60 IMRT plans showed no relevant differences. Mean values of PTV1 and PTV2 receiving at least 95% of the Dp (V95%) were higher than 95% in all treatment plans. All plans met the V105% constraint for the PTV1. Mean values of V105% for the PTV2 were 14.8, 5.0, and 7.3% respectively for tri-Co-60, VMAT and IMRT. Mean Wu's HI values were similar in all plans (7.4-7.8%). All plans met the V45Gy constraint for small bowel, but mean V45Gy value was higher with tri-Co-60.Bladder irradiation was comparable and always lower than the chosen D max 65 Gy constraint.Mean values of V5Gy and V20Gy to the body and median skin doses were higher with tri-Co-60 plans. DISCUSSION: Treatment plans with Tri-Co-60 step and shoot IMRT met the dose-volume objectives in patients with LARC. Nevertheless, a larger volume of normal tissue received low-moderate doses when compared with Linac based VMAT and IMRT.

9.
Cureus ; 10(3): e2292, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29750133

RESUMEN

The case of a 73-year-old woman affected by anal canal cancer with concomitant liver metastases is presented here. The patient was addressed to stereotactic body radiotherapy (SBRT) on two hepatic secondary lesions after the first radiochemotherapy treatment of the primary tumor. A Tri-60-Co magnetic resonance hybrid radiotherapy unit was used for SBRT treatment delivery. Both liver lesions were not clearly visible on the setup magnetic resonance imaging (MRI) due to their limited dimensions (maximum diameter 13 mm); however, the presence of two cysts adjacent to the metastases allowed the use of an indirect target gating approach. Treatment was delivered in deep inspiration breath-hold conditions using the visual feedback technique for breathing control optimization. Post radiotherapy imaging assessed the complete response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA