Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 23(1): 465-482, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38147655

RESUMEN

Temozolomide (TMZ) is the first line of chemotherapy to treat primary brain tumors of the type glioblastoma multiforme (GBM). TMZ resistance (TMZR) is one of the main barriers to successful treatment and is a principal factor in relapse, resulting in a poor median survival of 15 months. The present paper focuses on proteomic analyses of cytosolic fractions from TMZ-resistant (TMZR) LN-18 cells. The experimental workflow includes an easy, cost-effective, and reproducible method to isolate subcellular fraction of cytosolic (CYTO) proteins, mitochondria, and plasma membrane proteins for proteomic studies. For this study, enriched cytoplasmic fractions were analyzed in replicates by nanoflow liquid chromatography tandem high-resolution mass spectrometry (nLC-MS/MS), and proteins identified were quantified using a label-free approach (LFQ). Statistical analysis of control (CTRL) and temozolomide-resistant (TMZR) proteomes revealed proteins that appear to be differentially controlled in the cytoplasm. The functions of these proteins are discussed as well as their roles in other cancers and TMZ resistance in GBM. Key proteins are also described through biological processes related to gene ontology (GO), molecular functions, and cellular components. For protein-protein interactions (PPI), network and pathway involvement analyses have been performed, highlighting the roles of key proteins in the TMZ resistance phenotypes. This study provides a detailed insight into methods of subcellular fractionation for proteomic analysis of TMZ-resistant GBM cells and the potential to apply this approach to future large-scale studies. Several key proteins, protein-protein interactions (PPI), and pathways have been identified, underlying the TMZ resistance phenotype and highlighting the proteins' biological functions.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/patología , Proteómica , Espectrometría de Masas en Tándem , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Citoplasma/metabolismo , Resistencia a Antineoplásicos , Neoplasias Encefálicas/genética
2.
Rapid Commun Mass Spectrom ; 35(9): e9063, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33538041

RESUMEN

RATIONALE: While high-throughput proteomic methods have been widely applied to monoclonal antibodies and human immunoglobulin gamma (IgG) samples, less information is available on porcine IgG. As pigs are considered one of the most suitable species for xenotransplantation, it is important to characterize IgG amino acid sequences and glycosylation profiles, which is the focus of this study. METHODS: Three different purified porcine IgG samples, including wild-type and knockout species, were digested with trypsin and enriched for glycopeptides. Digestion mixtures were spiked with a mixture of six standard peptides. Analysis was performed using electrospray ionization liquid chromatography-tandem mass spectrometry (MS/MS) in standard MS/MS data-dependent acquisition mode on a hybrid triple quadrupole time-of-flight mass spectrometer. RESULTS: To facilitate the classification of subtypes detected experimentally, UniprotKB database entries were organized using comparative alignment scores. Sequences were grouped based on 11 different subtypes as translated from GenBank entries. Proteomic searches were accomplished automatically using specialized software, whereas glycoprotein searches were performed manually by monitoring the extracted chromatograms of diagnostic MS/MS glycan fragments and studying their corresponding mass spectra; 40-50 non-glycosylated peptides and 4-5 glycosylated peptides were detected in each sample, with several glycoforms per sequence. CONCLUSIONS: Proteomic analysis of porcine IgG is complicated by factors such as the presence of several subtypes, redundant heavy chain (HC) sequences in protein databases, and the lack of consistent cross-referencing between databases. Aligning and comparing HC sequences were necessary to eliminate redundancy. This study highlights the complexity of pig IgG and shows the importance of MS in proteomics and glycoproteomics.


Asunto(s)
Cromatografía Liquida/veterinaria , Glicoproteínas/análisis , Inmunoglobulina G/química , Proteómica/métodos , Sus scrofa/inmunología , Espectrometría de Masas en Tándem/veterinaria , Secuencia de Aminoácidos , Animales , Cromatografía Liquida/métodos , Técnicas de Inactivación de Genes , Glicopéptidos/análisis , Glicopéptidos/química , Glicoproteínas/metabolismo , Glicosilación , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Cadenas Pesadas de Inmunoglobulina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem/métodos
3.
Xenotransplantation ; 26(6): e12535, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31293002

RESUMEN

Humans cannot synthesize N-glycolylneuraminic acid (Neu5Gc) but dietary Neu5Gc can be absorbed and deposited on endothelial cells (ECs) and diet-induced anti-Neu5Gc antibodies (Abs) develop early in human life. While the interaction of Neu5Gc and diet-induced anti-Neu5Gc Abs occurs in all normal individuals, endothelium activation by elicited anti-Neu5Gc Abs following a challenge with animal-derived materials, such as following xenotransplantation, had been postulated. Ten primary human EC preparations were cultured with affinity-purified anti-Neu5Gc Abs from human sera obtained before or after exposure to Neu5Gc-glycosylated rabbit IgGs (elicited Abs). RNAs of each EC preparation stimulated in various conditions by purified Abs were exhaustively sequenced. EC transcriptomic patterns induced by elicited anti-Neu5Gc Abs, compared with pre-existing ones, were analyzed. qPCR, cytokines/chemokines release, and apoptosis were tested on some EC preparations. The data showed that anti-Neu5Gc Abs induced 967 differentially expressed (DE) genes. Most DE genes are shared following EC activation by pre-existing or anti-human T-cell globulin (ATG)-elicited anti-Neu5Gc Abs. Compared with pre-existing anti-Neu5Gc Abs, which are normal component of ECs environment, elicited anti-Neu5Gc Abs down-regulated 66 genes, including master genes of EC function. Furthermore, elicited anti-Neu5Gc Abs combined with complement-containing serum down-regulated most transcripts mobilized by serum alone. Both types of anti-Neu5Gc Abs-induced a dose- and complement-dependent release of selected cytokines and chemokines. Altogether, these data show that, compared with pre-existing anti-Neu5Gc Abs, ATG-elicited anti-Neu5Gc Abs specifically modulate genes related to cytokine responses, MAPkinase cascades, chemotaxis, and integrins and do not skew the EC transcriptome toward a pro-inflammatory profile in vitro.


Asunto(s)
Anticuerpos/farmacología , Células Endoteliales/efectos de los fármacos , Endotelio/metabolismo , Transcriptoma/genética , Animales , Anticuerpos/inmunología , Células Endoteliales/inmunología , Humanos , Inmunoglobulina G/metabolismo , Transcriptoma/inmunología , Trasplante Heterólogo/métodos
4.
Front Oncol ; 13: 1166207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182181

RESUMEN

Glioblastoma multiforme (GBM) is a primary type of lethal brain tumor. Over the last two decades, temozolomide (TMZ) has remained the primary chemotherapy for GBM. However, TMZ resistance in GBM constitutes an underlying factor contributing to high rates of mortality. Despite intense efforts to understand the mechanisms of therapeutic resistance, there is currently a poor understanding of the molecular processes of drug resistance. For TMZ, several mechanisms linked to therapeutic resistance have been proposed. In the past decade, significant progress in the field of mass spectrometry-based proteomics has been made. This review article discusses the molecular drivers of GBM, within the context of TMZ resistance with a particular emphasis on the potential benefits and insights of using global proteomic techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA