Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS Pathog ; 19(6): e1011185, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289831

RESUMEN

Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquitinating complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated in infection and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Replicación Viral/genética , Proteasas Ubiquitina-Específicas/genética , Transducción de Señal , Latencia del Virus/genética , Factor de Transcripción STAT1/genética
2.
Proc Natl Acad Sci U S A ; 119(35): e2201787119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994667

RESUMEN

Human cytomegalovirus (HCMV) is a major cause of illness in immunocompromised individuals. The HCMV lytic cycle contributes to the clinical manifestations of infection. The lytic cycle occurs over ∼96 h in diverse cell types and consists of viral DNA (vDNA) genome replication and temporally distinct expression of hundreds of viral proteins. Given its complexity, understanding this elaborate system can be facilitated by the introduction of mechanistic computational modeling of temporal relationships. Therefore, we developed a multiplicity of infection (MOI)-dependent mechanistic computational model that simulates vDNA kinetics and late lytic replication based on in-house experimental data. The predictive capabilities were established by comparison to post hoc experimental data. Computational analysis of combinatorial regulatory mechanisms suggests increasing rates of protein degradation in association with increasing vDNA levels. The model framework also allows expansion to account for additional mechanisms regulating the processes. Simulating vDNA kinetics and the late lytic cycle for a wide range of MOIs yielded several unique observations. These include the presence of saturation behavior at high MOIs, inefficient replication at low MOIs, and a precise range of MOIs in which virus is maximized within a cell type, being 0.382 IU to 0.688 IU per fibroblast. The predicted saturation kinetics at high MOIs are likely related to the physical limitations of cellular machinery, while inefficient replication at low MOIs may indicate a minimum input material required to facilitate infection. In summary, we have developed and demonstrated the utility of a data-driven and expandable computational model simulating lytic HCMV infection.


Asunto(s)
Simulación por Computador , Citomegalovirus , Genoma Viral , Proteínas Virales , Replicación Viral , Citomegalovirus/genética , Citomegalovirus/crecimiento & desarrollo , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , ADN Viral/genética , ADN Viral/metabolismo , Fibroblastos/virología , Genoma Viral/genética , Humanos , Cinética , Factores de Tiempo , Proteínas Virales/análisis , Proteínas Virales/biosíntesis , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(14): e2122174119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344424

RESUMEN

Replication-dependent (RD) histones are deposited onto human cytomegalovirus (HCMV) genomes at the start of infection. We examined how HCMV affects the de novo production of RD histones and found that viral infection blocked the accumulation of RD histone mRNAs that normally occurs during the S phase. Furthermore, RD histone mRNAs present in HCMV-infected cells did not undergo the unique 3' processing required for their normal nuclear export and translation. The protein that orchestrates processing in the nucleus, stem loop­binding protein (SLBP), was found predominantly in the cytoplasm, and RD histone proteins were not de novo synthesized in HCMV-infected cells. Intriguingly, however, we found that SLBP was required for the efficient synthesis and assembly of infectious progeny virions. We conclude that HCMV infection attenuates RD histone mRNA accumulation and processing and the de novo protein synthesis of the RD histones, while utilizing SLBP for an alternative purpose to support infectious virion production.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Histonas , Replicación Viral , División Celular , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/virología , Replicación del ADN , Histonas/metabolismo , Humanos
4.
Artículo en Inglés | MEDLINE | ID: mdl-38917324

RESUMEN

Ischemia-reperfusion injury (IRI) is an intrinsic risk associated with liver transplantation. Ex vivo hepatic machine perfusion (MP) is an emerging organ preservation technique that can mitigate IRI, especially in livers subjected to prolonged warm ischemia time (WIT). However, a method to quantify the biological response to WIT during MP has not been established. Previous studies used physiologically-based pharmacokinetic (PBPK) modeling to demonstrate that a decrease in hepatic transport and biliary excretion of the tracer molecule sodium fluorescein (SF) could correlate with increasing WIT in situ. Furthermore, these studies proposed intracellular sequestration of the hepatocyte canalicular membrane transporter multi-drug resistance-associated protein 2 (MRP2) leading to decreased MRP2 activity (maximal transport velocity; Vmax) as the potential mechanism for decreased biliary SF excretion. We adapted an extant PBPK model to account for ex vivo hepatic MP and fit a 6-parameter version of this model to control time course measurements of SF in MP perfusate and bile. We then identified parameters whose values were likely insensitive to changes in WIT and fixed them to generate a reduced model with only 3 unknown parameters. Finally, we fit the reduced model to each individual biological replicate SF time course with differing WIT and found the mean estimated value for each parameter and compared them using a one-way ANOVA. We demonstrated that there was a significant decrease in the estimated value of Vmax for MRP2 at 30 min WIT. These studies provide the foundation for future studies investigating real-time assessment of liver viability during ex vivo MP.

5.
J Virol ; 97(10): e0069623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796129

RESUMEN

IMPORTANCE: Human cytomegalovirus (HCMV) infection is the leading cause of non-heritable birth defects worldwide. HCMV readily infects the early progenitor cell population of the developing brain, and we have found that infection leads to significantly downregulated expression of key neurodevelopmental transcripts. Currently, there are no approved therapies to prevent or mitigate the effects of congenital HCMV infection. Therefore, we used human-induced pluripotent stem cell-derived organoids and neural progenitor cells to elucidate the glycoproteins and receptors used in the viral entry process and whether antibody neutralization was sufficient to block viral entry and prevent disruption of neurodevelopmental gene expression. We found that blocking viral entry alone was insufficient to maintain the expression of key neurodevelopmental genes, but neutralization combined with neurotrophic factor treatment provided robust protection. Together, these studies offer novel insight into mechanisms of HCMV infection in neural tissues, which may aid future therapeutic development.


Asunto(s)
Anticuerpos Neutralizantes , Infecciones por Citomegalovirus , Citomegalovirus , Expresión Génica , Factores de Crecimiento Nervioso , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Citomegalovirus/efectos de los fármacos , Citomegalovirus/inmunología , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Células Madre Pluripotentes Inducidas/citología , Factores de Crecimiento Nervioso/farmacología , Factores de Crecimiento Nervioso/uso terapéutico , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/virología , Organoides/citología , Organoides/metabolismo , Organoides/virología , Receptores Virales/antagonistas & inhibidores , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos
6.
J Virol ; 96(14): e0012622, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35862705

RESUMEN

Human cytomegalovirus (HCMV) is a prevalent betaherpesvirus that is asymptomatic in healthy individuals but can cause serious disease in immunocompromised patients. HCMV is also the leading cause of virus-mediated birth defects. Many of these defects manifest within the central nervous system and include microcephaly, sensorineural hearing loss, and cognitive developmental delays. Nitric oxide is a critical effector molecule produced as a component of the innate immune response during infection. Congenitally infected fetal brains show regions of brain damage, including necrotic foci with infiltrating macrophages and microglia, cell types that produce nitric oxide during infection. Using a 3-dimensional cortical organoid model, we demonstrate that nitric oxide inhibits HCMV spread and simultaneously disrupts neural rosette structures, resulting in tissue disorganization. Nitric oxide also attenuates HCMV replication in 2-dimensional cultures of neural progenitor cells (NPCs), a prominent cell type in cortical organoids that differentiate into neurons and glial cells. The multipotency factor SOX2 was decreased during nitric oxide exposure, suggesting that early neural differentiation is affected. Nitric oxide also reduced maximal mitochondrial respiration in both uninfected and infected NPCs. We determined that this reduction likely influences neural differentiation, as neurons (Tuj1+ GFAP- Nestin-) and glial populations (Tuj1- GFAP+ Nestin-) were reduced following differentiation. Our studies indicate a prominent, immunopathogenic role of nitric oxide in promoting developmental defects within the brain despite its antiviral activity during congenital HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of virus-mediated congenital birth defects. Congenitally infected infants can have a variety of symptoms manifesting within the central nervous system. The use of 3-dimensional (3-D) cortical organoids to model infection of the fetal brain has advanced the current understanding of development and allowed broader investigation of the mechanisms behind disease. However, the impact of the innate immune molecule nitric oxide during HCMV infection has not been explored in neural cells or cortical 3-D models. Here, we investigated the effect of nitric oxide on cortical development during HCMV infection. We demonstrate that nitric oxide plays an antiviral role during infection yet results in disorganized cortical tissue. Nitric oxide contributes to differentiation defects of neuron and glial cells from neural progenitor cells despite inhibiting viral replication. Our results indicate that immunopathogenic consequences of nitric oxide during congenital infection promote developmental defects that undermine its antiviral activity.


Asunto(s)
Diferenciación Celular , Infecciones por Citomegalovirus , Células-Madre Neurales , Óxido Nítrico , Antivirales , Corteza Cerebral/virología , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/patología , Humanos , Nestina , Células-Madre Neurales/virología , Óxido Nítrico/farmacología , Organoides/virología
7.
PLoS Comput Biol ; 16(4): e1007733, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251461

RESUMEN

The cellular protein-protein interaction network that governs cellular proliferation (cell cycle) is highly complex. Here, we have developed a novel computational model of human mitotic cell cycle, integrating diverse cellular mechanisms, for the purpose of generating new hypotheses and predicting new experiments designed to help understand complex diseases. The pathogenic state investigated is infection by a human herpesvirus. The model starts at mitotic entry initiated by the activities of Cyclin-dependent kinase 1 (CDK1) and Polo-like kinase 1 (PLK1), transitions through Anaphase-promoting complex (APC/C) bound to Cell division cycle protein 20 (CDC20), and ends upon mitotic exit mediated by APC/C bound to CDC20 homolog 1 (CDH1). It includes syntheses and multiple mechanisms of degradations of the mitotic proteins. Prior to this work, no such comprehensive model of the human mitotic cell cycle existed. The new model is based on a hybrid framework combining Michaelis-Menten and mass action kinetics for the mitotic interacting reactions. It simulates temporal changes in 12 different mitotic proteins and associated protein complexes in multiple states using 15 interacting reactions and 26 ordinary differential equations. We have defined model parameter values using both quantitative and qualitative data and using parameter values from relevant published models, and we have tested the model to reproduce the cardinal features of human mitosis determined experimentally by numerous laboratories. Like cancer, viruses create dysfunction to support infection. By simulating infection of the human herpesvirus, cytomegalovirus, we hypothesize that virus-mediated disruption of APC/C is necessary to establish a unique mitotic collapse with sustained CDK1 activity, consistent with known mechanisms of virus egress. With the rapid discovery of cellular protein-protein interaction networks and regulatory mechanisms, we anticipate that this model will be highly valuable in helping us to understand the network dynamics and identify potential points of therapeutic interventions.


Asunto(s)
Biología Computacional/métodos , Mitosis/fisiología , Mapas de Interacción de Proteínas/fisiología , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Antígenos CD/metabolismo , Proteína Quinasa CDC2/metabolismo , Cadherinas/metabolismo , Proteínas Cdc20/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Humanos , Cinética , Modelos Teóricos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
8.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31217241

RESUMEN

The herpesvirus human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Infection can result in infants born with a variety of symptoms, including hepatosplenomegaly, microcephaly, and developmental disabilities. Microcephaly is associated with disruptions in the neural progenitor cell (NPC) population. Here, we defined the impact of HCMV infection on neural tissue development and calcium regulation, a critical activity in neural development. Regulation of intracellular calcium involves purinergic receptors and voltage-gated calcium channels (VGCC). HCMV infection compromised the ability of both pathways in NPCs as well as fibroblasts to respond to stimulation. We observed significant drops in basal calcium levels in infected NPCs which were accompanied by loss in VGCC activity and purinergic receptor responses. However, uninfected cells in the population retained responsiveness. Addition of the HCMV inhibitor maribavir reduced viral spread but failed to restore activity in infected cells. To study neural development, we infected three-dimensional cortical organoids with HCMV. Infection spread to a subset of cells over time and disrupted organoid structure, with alterations in developmental and neural layering markers. Organoid-derived infected neurons and astrocytes were unable to respond to stimulation whereas uninfected cells retained nearly normal responses. Maribavir partially restored structural features, including neural rosette formation, and dampened the impact of infection on neural cellular function. Using a tissue model system, we have demonstrated that HCMV alters cortical neural layering and disrupts calcium regulation in infected cells.IMPORTANCE Human cytomegalovirus (HCMV) replicates in several cell types throughout the body, causing disease in the absence of an effective immune response. Studies on HCMV require cultured human cells and tissues due to species specificity. In these studies, we investigated the impact of infection on developing three-dimensional cortical organoid tissues, with specific emphasis on cell-type-dependent calcium signaling. Calcium signaling is an essential function during neural differentiation and cortical development. We observed that HCMV infects and spreads within these tissues, ultimately disrupting cortical structure. Infected cells exhibited depleted calcium stores and loss of ATP- and KCl-stimulated calcium signaling while uninfected cells in the population maintained nearly normal responses. Some protection was provided by the viral inhibitor maribavir. Overall, our studies provide new insights into the impact of HCMV on cortical tissue development and function.


Asunto(s)
Señalización del Calcio , Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Células-Madre Neurales/virología , Organoides/virología , Bencimidazoles/farmacología , Diferenciación Celular , Línea Celular , Citomegalovirus/efectos de los fármacos , Citomegalovirus/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Técnicas de Cultivo de Órganos , Organoides/citología , Organoides/metabolismo , Receptores Purinérgicos/metabolismo , Ribonucleósidos/farmacología , Replicación Viral/efectos de los fármacos , Canales de Sodio Activados por Voltaje/metabolismo
9.
J Biol Chem ; 293(36): 14080-14088, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30006350

RESUMEN

Targeting mRNAs via seed region pairing is the canonical mechanism by which microRNAs (miRNAs) regulate cellular functions and disease processes. Emerging evidence suggests miRNAs might also act through other mechanisms. miRNA isomers that contain identical seed region sequences, such as miR-29a and miR-29b, provide naturally occurring, informative models for identifying those miRNA effects that are independent of seed region pairing. miR-29a and miR-29b are both expressed in HeLa cells, and miR-29b has been reported to localize to the nucleus in early mitosis because of unique nucleotide sequences on its 3' end. Here, we sought to better understand the mechanism of miR-29b nuclear localization and its function in cell division. We hypothesized that its nuclear localization may be facilitated by protein-miRNA interactions unique to miR-29b. Specific blockade of miR-29b resulted in striking nuclear irregularities not observed following miR-29a blockade. We also observed that miR-29b, but not miR-29a, is enriched in the nucleus and perinuclear clusters during mitosis. Targeted proteomic analysis of affinity-purified samples identified several proteins interacting with synthetic oligonucleotides mimicking miR-29b, but these proteins did not interact with miR-29a. One of these proteins, ADP/ATP translocase 2 (ANT2), known to be involved in mitotic spindle formation, colocalized with miR-29b in perinuclear clusters independently of Argonaute 2. Of note, ANT2 knockdown resulted in nuclear irregularities similar to those observed following miR-29b blockade and prevented nuclear uptake of endogenous miR-29b. Our findings reveal that miR-29 regulates nuclear morphology during mitosis and that this critical function is unique to the miR-29b isoform.


Asunto(s)
Transporte Activo de Núcleo Celular , MicroARNs/fisiología , Translocador 2 del Nucleótido Adenina/análisis , División Celular , Forma del Núcleo Celular , Células HeLa , Humanos , Isomerismo , MicroARNs/metabolismo , Mitosis , Proteómica
10.
Mol Cell Proteomics ; 16(4 suppl 1): S124-S143, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28183815

RESUMEN

Vaccinia virus, a complex dsDNA virus, is unusual in replicating exclusively within the cytoplasm of infected cells. Although this prototypic poxvirus encodes >200 proteins utilized during infection, a significant role for host proteins and cellular architecture is increasingly evident. The viral B1 kinase and H1 phosphatase are known to target cellular proteins as well as viral substrates, but little is known about the cellular substrates of the F10 kinase. F10 is essential for virion morphogenesis, beginning with the poorly understood process of diversion of membranes from the ER for the purpose of virion membrane biogenesis. To better understand the function of F10, we generated a cell line that carries a single, inducible F10 transgene. Using uninduced and induced cells, we performed stable isotope labeling of amino acids in cell culture (SILAC) coupled with phosphopeptide analysis to identify cellular targets of F10-mediated phosphorylation. We identified 27 proteins that showed statistically significant changes in phosphorylation upon the expression of the F10 kinase: 18 proteins showed an increase in phosphorylation whereas 9 proteins showed a decrease in phosphorylation. These proteins participate in several distinct cellular processes including cytoskeleton dynamics, membrane trafficking and cellular metabolism. One of the proteins with the greatest change in phosphorylation was mDia, a member of the formin family of cytoskeleton regulators; F10 induction led to increased phosphorylation on Ser22 Induction of F10 induced a statistically significant decrease in the percentage of cells with actin stress fibers; however, this change was abrogated when an mDia Ser22Ala variant was expressed. Moreover, expression of a Ser22Asp variant leads to a reduction of stress fibers even in cells not expressing F10. In sum, we present the first unbiased screen for cellular targets of F10-mediated phosphorylation, and in so doing describe a heretofore unknown mechanism for regulating stress fiber formation through phosphorylation of mDia. Data are available via ProteomeXchange with identifier PXD005246.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Fibras de Estrés/metabolismo , Virus Vaccinia/metabolismo , Proteínas Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Regulación Viral de la Expresión Génica , Humanos , Marcaje Isotópico , Fosfoproteínas/aislamiento & purificación , Fosforilación , Mapas de Interacción de Proteínas , Serina/metabolismo
11.
J Bacteriol ; 200(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29760207

RESUMEN

Mycobacterium tuberculosis is a global pathogen of significant medical importance. A key aspect of its life cycle is the ability to enter into an altered physiological state of nonreplicating persistence during latency and resist elimination by the host immune system. One mechanism by which M. tuberculosis facilitates its survival during latency is by producing and metabolizing intracytoplasmic lipid droplets (LDs). LDs are quasi-organelles consisting of a neutral lipid core such as triacylglycerol surrounded by a phospholipid monolayer and proteins. We previously reported that PspA (phage shock protein A) associates with LDs produced in Mycobacterium In particular, the loss or overproduction of PspA alters LD homeostasis in Mycobacterium smegmatis and attenuates the survival of M. tuberculosis during nonreplicating persistence. Here, M. tuberculosis PspA (PspAMtb) and a ΔpspA M. smegmatis mutant were used as model systems to investigate the mechanism by which PspA associates with LDs and determine if other Mycobacterium proteins associate with LDs using a mechanism similar to that for PspA. Through this work, we established that the amphipathic helix present in the first α-helical domain (H1) of PspA is both necessary and sufficient for the targeting of this protein to LDs. Furthermore, we identified other Mycobacterium proteins that also possess amphipathic helices similar to PspA H1, including a subset that localize to LDs. Altogether, our results indicate that amphipathic helices may be an important mechanism by which proteins target LDs in prokaryotes.IMPORTANCEMycobacterium spp. are one of the few prokaryotes known to produce lipid droplets (LDs), and their production has been linked to aspects of persistent infection by M. tuberculosis Unfortunately, little is known about LD production in these organisms, including how LDs are formed, their function, or the identity of proteins that associate with them. In this study, an established M. tuberculosis LD protein and a surrogate Mycobacterium host were used as model systems to study the interactions between proteins and LDs in bacteria. Through these studies, we identified a commonly occurring protein motif that is able to facilitate the association of proteins to LDs in prokaryotes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Choque Térmico/genética , Gotas Lipídicas/química , Mycobacterium tuberculosis/química , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Metabolismo de los Lípidos , Mycobacterium tuberculosis/genética , Fosfolípidos , Transporte de Proteínas , Proteómica , Triglicéridos
12.
J Virol ; 91(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28659485

RESUMEN

The replication cycle of human cytomegalovirus (CMV) leads to drastic reorganization of domains in the host cell nucleus. However, the mechanisms involved and how these domains contribute to infection are not well understood. Our recent studies defining the CMV-induced nuclear proteome identified several viral proteins of unknown functions, including a protein encoded by the UL31 gene. We set out to define the role of UL31 in CMV replication. UL31 is predicted to encode a 74-kDa protein, referred to as pUL31, containing a bipartite nuclear localization signal, an intrinsically disordered region overlapping arginine-rich motifs, and a C-terminal dUTPase-like structure. We observed that pUL31 is expressed with true late kinetics and is localized to nucleolin-containing nuclear domains. However, pUL31 is excluded from the viral nuclear replication center. Nucleolin is a marker of nucleoli, which are membrane-less regions involved in regulating ribosome biosynthesis and cellular stress responses. Other CMV proteins associate with nucleoli, and we demonstrate that pUL31 specifically interacts with the viral protein, pUL76. Coexpression of both proteins altered pUL31 localization and nucleolar organization. During infection, pUL31 colocalizes with nucleolin but not the transcriptional activator, UBF. In the absence of pUL31, CMV fails to reorganize nucleolin and UBF and exhibits a replication defect at a low multiplicity of infection. Finally, we observed that pUL31 is necessary and sufficient to reduce pre-rRNA levels, and this was dependent on the dUTPase-like motif in pUL31. Our studies demonstrate that CMV pUL31 functions in regulating nucleolar biology and contributes to the reorganization of nucleoli during infection.IMPORTANCE Nucleolar biology is important during CMV infection with the nucleolar protein, with nucleolin playing a role in maintaining the architecture of the viral nuclear replication center. However, the extent of CMV-mediated regulation of nucleolar biology is not well established. Proteins within nucleoli regulate ribosome biosynthesis and p53-dependent cellular stress responses that are capable of inducing cell cycle arrest and/or apoptosis, and they are proposed targets for cancer therapies. This study establishes that CMV protein pUL31 is necessary and sufficient to regulate nucleolar biology involving the reorganization of nucleolar proteins. Understanding these processes will help define approaches to stimulate cellular intrinsic stress responses that are capable of inhibiting CMV infection.


Asunto(s)
Núcleo Celular/virología , Citomegalovirus/fisiología , Precursores del ARN/biosíntesis , Proteínas Virales/metabolismo , Replicación Viral , Línea Celular , Nucléolo Celular/metabolismo , Infecciones por Citomegalovirus , Perfilación de la Expresión Génica , Humanos , Mapeo de Interacción de Proteínas , Virosis
13.
J Virol ; 89(20): 10230-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26223645

RESUMEN

UNLABELLED: Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family. During infection, an array of viral proteins manipulates the host cell cycle. We have previously shown that expression of HCMV pUL27 results in increased levels of the cyclin-dependent kinase (CDK) inhibitor p21(Cip1). In addition, pUL27 is necessary for the full antiviral activity of the pUL97 kinase inhibitor maribavir (MBV). The purpose of this study was to define the relationship between pUL27 and pUL97 and its role in MBV antiviral activity. We observed that expression of wild-type but not kinase-inactive pUL97 disrupted pUL27-dependent induction of p21(Cip1). Furthermore, pUL97 associated with and promoted the phosphorylation of pUL27. During infection, inhibition of the kinase resulted in elevated levels of p21(Cip1) in wild-type virus but not a pUL27-deficient virus. We manipulated the p21(Cip1) levels to evaluate the functional consequence to MBV. Overexpression of p21(Cip1) restored MBV activity against a pUL27-deficient virus, while disruption reduced activity against wild-type virus. We provide evidence that the functional target of p21(Cip1) in the context of MBV activity is CDK1. One CDK-like activity of pUL97 is to phosphorylate nuclear lamin A/C, resulting in altered nuclear morphology and increased viral egress. In the presence of MBV, we observed that infection using a pUL27-deficient virus still altered the nuclear morphology. This was prevented by the addition of a CDK inhibitor. Overall, our results demonstrate an antagonistic relationship between pUL27 and pUL97 activities centering on p21(Cip1) and support the idea that CDKs can complement some activities of pUL97. IMPORTANCE: HCMV infection results in severe disease upon immunosuppression and is a leading cause of congenital birth defects. Effective antiviral compounds exist, yet they exhibit high levels of toxicity, are not approved for use during pregnancy, and can result in antiviral resistance. Our studies have uncovered new information regarding the antiviral efficacy of the HCMV pUL97 kinase inhibitor MBV as it relates to the complex interplay between pUL97 and a second HCMV protein, pUL27. We demonstrate that pUL97 functions antagonistically against pUL27 by phosphorylation-dependent inactivation of pUL27-mediated induction of p21(Cip1). In contrast, we provide evidence that p21(Cip1) functions to antagonize overlapping activities between pUL97 and cellular CDKs. In addition, these studies further support the notion that CDK inhibitors or p21(Cip1) activators might be useful in combination with MBV to effectively inhibit HCMV infections.


Asunto(s)
Antivirales/farmacología , Bencimidazoles/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Citomegalovirus/efectos de los fármacos , Ribonucleósidos/farmacología , Proteínas Virales/genética , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/virología , Proteína Quinasa CDC2 , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/virología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Proteínas Virales/metabolismo
14.
Proteomics ; 15(12): 1995-2005, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25758553

RESUMEN

Human cytomegalovirus (HCMV) is a herpesvirus that is ubiquitously distributed worldwide and causes life-threating disease upon immunosuppression. HCMV expresses numerous proteins that function to establish an intracellular environment that supports viral replication. Like most DNA viruses, HCMV manipulates processes within the nucleus. We have quantified changes in the host cell nuclear proteome at 24 h post infection following infection with a clinical viral isolate. We have combined SILAC with multiple stages of fractionation to define changes. Tryptic peptides were analyzed by RP-HPLC combined with LC-MS/MS on an LTQ Orbitrap Velos mass spectrometer. Data from three biological replicates were processed with MaxQuant. A total of 1281 cellular proteins were quantified and 77 were found to be significantly differentially expressed. In addition, we observed 36 viral proteins associated with the nucleus. Diverse biological processes were significantly altered, including increased aspects of cell cycling, mRNA metabolism, and nucleocytoplasmic transport and decreased immune responses. We validated changes for several proteins including a subset of classical nuclear transport proteins. In addition, we demonstrated that disruption of these import factors is inhibitory to HCMV replication. Overall, we have identified HCMV-induced changes in the nuclear proteome and uncovered several processes that are important for infection. All MS data have been deposited in the ProteomeXchange with identifier PXD001909 (http://proteomecentral.proteomexchange.org/dataset/PXD001909).


Asunto(s)
Núcleo Celular/metabolismo , Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/fisiología , Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Proteómica/métodos , Western Blotting , Núcleo Celular/genética , Células Cultivadas , Cromatografía Liquida , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Fibroblastos/virología , Humanos , Inmunoprecipitación , Proteínas Nucleares/genética , Espectrometría de Masas en Tándem , Proteínas Virales/metabolismo , Replicación Viral
15.
J Bacteriol ; 196(2): 391-406, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24187094

RESUMEN

Mycobacterium tuberculosis is an acid-fast pathogen of humans and the etiological agent of tuberculosis (TB). It is estimated that one-third of the world's population is latently (persistently) infected with M. tuberculosis. M. tuberculosis persistence is regulated, in part, by the MprAB two-component signal transduction system, which is activated by and mediates resistance to cell envelope stress. Here we identify MprAB as part of an evolutionarily conserved cell envelope stress response network and demonstrate that MprAB-mediated signal transduction is negatively regulated by the MprB extracytoplasmic domain (ECD). In particular, we report that deregulated production of the MprB sensor kinase, or of derivatives of this protein, negatively impacts M. tuberculosis growth. The observed growth attenuation is dependent on MprAB-mediated signal transduction and is exacerbated in strains of M. tuberculosis producing an MprB variant lacking its ECD. Interestingly, full-length MprB, and the ECD of MprB specifically, immunoprecipitates the Hsp70 chaperone DnaK in vivo, while overexpression of dnaK inhibits MprAB-mediated signal transduction in M. tuberculosis grown in the absence or presence of cell envelope stress. We propose that under nonstress conditions, or under conditions in which proteins present in the extracytoplasmic space are properly folded, signaling through the MprAB system is inhibited by the MprB ECD. Following exposure to cell envelope stress, proteins present in the extracytoplasmic space become unfolded or misfolded, leading to removal of the ECD-mediated negative regulation of MprB and subsequent activation of MprAB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/genética , Inmunoprecipitación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Transducción de Señal , Estrés Fisiológico
16.
J Virol ; 87(13): 7393-408, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23616659

RESUMEN

Human cytomegalovirus (HCMV) is a common agent of congenital infection and causes severe disease in immunocompromised patients. Current approved therapies focus on inhibiting viral DNA replication. The HCMV kinase pUL97 contributes to multiple stages of viral infection including DNA replication, controlling the cell cycle, and virion maturation. Our studies demonstrate that pUL97 also functions by influencing immediate early (IE) gene expression during the initial stages of infection. Inhibition of kinase activity using the antiviral compound maribavir or deletion of the UL97 gene resulted in decreased expression of viral immediate early genes during infection. Expression of pUL97 was sufficient to transactivate IE1 gene expression from the viral genome, which was dependent on viral kinase activity. We observed that pUL97 associates with histone deacetylase 1 (HDAC1). HDAC1 is a transcriptional corepressor that acts to silence expression of viral genes. We observed that inhibition or deletion of pUL97 kinase resulted in increased HDAC1 and decreased histone H3 lysine 9 acetylation associating with the viral major immediate early (MIE) promoter. IE expression during pUL97 inhibition or deletion was rescued following inhibition of deacetylase activity. HDAC1 associates with chromatin by protein-protein interactions. Expression of active but not inactive pUL97 kinase decreased HDAC1 interaction with the transcriptional repressor protein DAXX. Finally, using mass spectrometry, we found that HDAC1 is uniquely phosphorylated upon expression of pUL97. Our results support the conclusion that HCMV pUL97 kinase regulates viral immediate early gene expression by phosphorylation-mediated disruption of HDAC1 binding to the MIE promoter.


Asunto(s)
Citomegalovirus/enzimología , Regulación Viral de la Expresión Génica/fisiología , Histona Desacetilasa 1/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Bencimidazoles , Western Blotting , Inmunoprecipitación de Cromatina , Proteínas Co-Represoras , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Regulación Viral de la Expresión Génica/genética , Humanos , Inmunoprecipitación , Espectrometría de Masas , Chaperonas Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas/genética , Ribonucleósidos
17.
J Virol ; 87(19): 10763-76, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23903834

RESUMEN

In the canonical STAT3 signaling pathway, binding of agonist to receptors activates Janus kinases that phosphorylate cytoplasmic STAT3 at tyrosine 705 (Y705). Phosphorylated STAT3 dimers accumulate in the nucleus and drive the expression of genes involved in inflammation, angiogenesis, invasion, and proliferation. Here, we demonstrate that human cytomegalovirus (HCMV) infection rapidly promotes nuclear localization of STAT3 in the absence of robust phosphorylation at Y705. Furthermore, infection disrupts interleukin-6 (IL-6)-induced phosphorylation of STAT3 and expression of a subset of IL-6-induced STAT3-regulated genes, including SOCS3. We show that the HCMV 72-kDa immediate-early 1 (IE1) protein associates with STAT3 and is necessary to localize STAT3 to the nucleus during infection. Furthermore, expression of IE1 is sufficient to disrupt IL-6-induced phosphorylation of STAT3, binding of STAT3 to the SOCS3 promoter, and SOCS3 gene expression. Finally, inhibition of STAT3 nuclear localization or STAT3 expression during infection is linked to diminished HCMV genome replication. Viral gene expression is also disrupted, with the greatest impact seen following viral DNA synthesis. Our study identifies IE1 as a new regulator of STAT3 intracellular localization and IL-6 signaling and points to an unanticipated role of STAT3 in HCMV infection.


Asunto(s)
Núcleo Celular/metabolismo , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Astrocitoma/metabolismo , Astrocitoma/patología , Astrocitoma/virología , Western Blotting , Núcleo Celular/genética , Células Cultivadas , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/virología , Técnica del Anticuerpo Fluorescente , Humanos , Proteínas Inmediatas-Precoces/genética , Interleucina-6/genética , Ratones , Fosforilación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/genética , Transducción de Señal , Transactivadores , Replicación Viral
18.
J Virol ; 87(13): 7314-25, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23616648

RESUMEN

Gammaherpesviruses are ubiquitious pathogens that establish lifelong infection and are associated with several malignancies. All gammaherpesviruses encode a conserved protein kinase that facilitates viral replication and chronic infection and thus represents an attractive therapeutic target. In this study, we identify a novel function of gammaherpesvirus protein kinase as a regulator of class I histone deacetylases (HDAC). Mouse gammaherpesvirus 68 (MHV68)-encoded protein kinase orf36 interacted with HDAC1 and 2 and prevented association of these HDACs with the viral promoter driving expression of RTA, a critical immediate early transcriptional activator. Furthermore, the ability to interact with HDAC1 and 2 was not limited to the MHV68 orf36, as BGLF4, a related viral protein kinase encoded by Epstein-Barr virus, interacted with HDAC1 in vitro. Importantly, targeting of HDAC1 and 2 by orf36 was independent of the kinase's enzymatic activity. Additionally, orf36 expression, but not its enzymatic activity, induced changes in the global deacetylase activity observed in infected primary macrophages. Combined deficiency of HDAC1 and 2 rescued attenuated replication and viral DNA synthesis of the orf36 null MHV68 mutant, indicating that the regulation of HDAC1 and 2 by orf36 was relevant for viral replication. Understanding the mechanism by which orf36 facilitates viral replication, including through HDAC targeting, will facilitate the development of improved therapeutics against gammaherpesvirus kinases.


Asunto(s)
Gammaherpesvirinae/enzimología , Histona Desacetilasas/metabolismo , Macrófagos/virología , Proteínas Quinasas/metabolismo , Replicación Viral/fisiología , Animales , Western Blotting , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Virales/metabolismo
20.
J Virol ; 87(5): 2463-74, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23236067

RESUMEN

During infection by human cytomegalovirus (HCMV), the tumor suppressor protein p53, which promotes efficient viral gene expression, is stabilized. However, the expression of numerous p53-responsive cellular genes is not upregulated. The molecular mechanism used to manipulate the transcriptional activity of p53 during infection remains unclear. The HCMV proteins IE1, IE2, pUL44, and pUL84 likely contribute to the regulation of p53. In this study, we used a discovery-based approach to identify the protein targets of the HCMV protein pUL29/28 during infection. Previous studies have demonstrated that pUL29/28 regulates viral gene expression by interacting with the chromatin remodeling complex NuRD. Here, we observed that pUL29/28 also associates with p53, an additional deacetylase complex, and several HCMV proteins, including pUL38. We confirmed the interaction between p53 and pUL29/28 in both the presence and absence of infection. HCMV pUL29/28 with pUL38 altered the activity of the 53-regulatable p21CIP1 promoter. During infection, pUL29/28 and pUL38 contributed to the inhibition of p21CIP1 as well as caspase 1 expression. The expression of several other p53-regulating genes was not altered. Infection using a UL29-deficient virus resulted in increased p53 binding and histone H3 acetylation at the responsive promoters. Furthermore, expression of pUL29/28 and its interacting partner pUL38 contributed to an increase in the steady-state protein levels of p53. This study identified two additional HCMV proteins, pUL29/28 and pUL38, which participate in the complex regulation of p53 transcriptional activity during infection.


Asunto(s)
Caspasa 1/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Proteínas de la Cápside/metabolismo , Caspasa 1/biosíntesis , Ciclo Celular , Línea Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos , Regulación de la Expresión Génica , Células HEK293 , Histonas/metabolismo , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA