Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(7): e0067224, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38940566

RESUMEN

This study performed microbial analysis of nutrient film technique (NFT) hydroponic systems on three indoor farms in Singapore (the "what"). To justify the necessity of sanitizing hydroponic systems, strong biofilm-forming bacteria were isolated from the facility and investigated for their influence on Salmonella colonization on polyvinyl chloride (PVC) coupons in hydroponic nutrient solutions (the "why"). Finally, sanitization solutions were evaluated with both laboratory-scale and field-scale tests (the "how"). As a result, the microbiome composition in NFT systems was found to be highly farm specific. The strong biofilm formers Corynebacterium tuberculostearicum C2 and Pseudoxanthomonas mexicana C3 were found to facilitate the attachment and colonization of Salmonella on PVC coupons. When forming dual-species biofilms, the presence of C2 and C3 also significantly promoted the growth of Salmonella (P < 0.05). Compared with hydrogen peroxide (H2O2) and sodium percarbonate (SPC), sodium hypochlorite (NaOCl) exhibited superior efficacy in biofilm removal. At 50 ppm, NaOCl reduced the Salmonella Typhimurium, C2, and C3 counts to <1 log CFU/cm2 within 12 h, whereas neither 3% H2O2 nor 1% SPC achieved this effect. In operational hydroponic systems, the concentration of NaOCl needed to achieve biofilm elimination increased to 500 ppm, likely due to the presence of organic matter accumulated during crop cultivation and the greater persistence of naturally formed multispecies biofilms. Sanitization using 500 ppm NaOCl for 12 h did not impede subsequent plant growth, but chlorination byproduct chlorate was detected at high levels in the hydroponic solution and in plants in the sanitized systems without rinsing. IMPORTANCE: This study's significance lies first in its elucidation of the necessity of sanitizing hydroponic farming systems. The microbiome in hydroponic systems, although mostly nonpathogenic, might serve as a hotbed for pathogen colonization and thus pose a risk for food safety. We thus explored sanitization solutions with both laboratory-scale and field-scale tests. Of the three tested sanitizers, NaOCl was the most effective and economical option, whereas one must note the vital importance of rinsing the hydroponic systems after sanitization with NaOCl.


Asunto(s)
Biopelículas , Desinfectantes , Hidroponía , Singapur , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Desinfectantes/farmacología , Desinfección/métodos , Hipoclorito de Sodio/farmacología , Granjas , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Bacterias/clasificación , Peróxido de Hidrógeno/farmacología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/fisiología
2.
J Appl Microbiol ; 132(2): 1449-1456, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34496092

RESUMEN

AIMS: We investigated the fate of Salmonella in lettuce seeds grown in a hydroponic system and the potentials of applying photodynamic inactivation (PDI) to enhance microbial safety of hydroponic farming systems. METHODS AND RESULTS: Lettuce was grown from Salmonella-contaminated seeds, and rose bengal-mediated PDI was applied. Without intervention, Salmonella could persist in plants and hydroponic farming environment throughout 6 weeks of lettuce growth. Cross-contamination from Salmonella-inoculated to noninoculated seedlings was observed. PDI significantly decreased Salmonella from 3.90 ± 0.31 log colony-forming unit (CFU) per plant to 2.77 ± 0.49 log CFU per plant without extra illumination needed (p < 0.01) by week six. CONCLUSIONS: Salmonella from contaminated seeds could survive for an extended period in lettuce and hydroponic farming environment and posed serious cross-contamination risks. Rose bengal-mediated PDI showed promise in controlling Salmonella contamination in lettuce in a hydroponic farming setting. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shed light on the serious food safety implications that Salmonella-contaminated lettuce seeds might entail in a hydroponic farming environment and demonstrated rose bengal-mediated PDI as a potential mitigation strategy. These findings contribute to the increasingly relevant field of urban farming systems and their associated food safety concerns.


Asunto(s)
Microbiología de Alimentos , Lactuca , Recuento de Colonia Microbiana , Contaminación de Alimentos/análisis , Hidroponía , Salmonella , Semillas
3.
Proc Natl Acad Sci U S A ; 111(25): 9319-24, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927545

RESUMEN

The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Triptófano-Transaminasa/metabolismo , Agua , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Raíces de Plantas/genética , Triptófano-Transaminasa/genética
4.
Plant Cell ; 25(6): 2132-54, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23898029

RESUMEN

Plant environmental responses involve dynamic changes in growth and signaling, yet little is understood as to how progress through these events is regulated. Here, we explored the phenotypic and transcriptional events involved in the acclimation of the Arabidopsis thaliana seedling root to a rapid change in salinity. Using live-imaging analysis, we show that growth is dynamically regulated with a period of quiescence followed by recovery then homeostasis. Through the use of a new high-resolution spatio-temporal transcriptional map, we identify the key hormone signaling pathways that regulate specific transcriptional programs, predict their spatial domain of action, and link the activity of these pathways to the regulation of specific phases of growth. We use tissue-specific approaches to suppress the abscisic acid (ABA) signaling pathway and demonstrate that ABA likely acts in select tissue layers to regulate spatially localized transcriptional programs and promote growth recovery. Finally, we show that salt also regulates many tissue-specific and time point-specific transcriptional responses that are expected to modify water transport, Casparian strip formation, and protein translation. Together, our data reveal a sophisticated assortment of regulatory programs acting together to coordinate spatially patterned biological changes involved in the immediate and long-term response to a stressful shift in environment.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloruro de Sodio/farmacología , Transcriptoma/efectos de los fármacos , Ácido Abscísico/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Análisis por Conglomerados , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis Espacio-Temporal , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Tiempo , Imagen de Lapso de Tiempo
5.
Environ Microbiol Rep ; 15(3): 229-238, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36916773

RESUMEN

Bacillus subtilis (BS) is a well-known beneficial microorganism for plants but is not competitive in the plant rhizosphere microbiome. We report the selective support of Brassica rapa subsp. Chinensis (Xiao Bai Cai) juice (XBCJ) on BS both in hydroponic nutrient solution and the plant rhizosphere of lettuce. After 2 weeks of being inoculated in the lettuce rhizosphere, the Bacillus population was enumerated at 3.30 ± 0.07 log CFU/unit in the BS group and at 5.20 ± 0.39 log CFU/unit in the BS + XBCJ group (p < 0.05). Accordingly, lettuce crops from the BS + XBCJ group were significantly higher than the control group for all of the tested biomass-related parameters (p < 0.05). The treatment did not significantly affect the texture, colour, moisture contents, total phenolic contents, or antioxidant activities of the lettuce crops (p > 0.05). Non-target ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) suggested that phenolic compounds could be the key class of phytochemicals being responsible for the selectivity. High-throughput RNA-based 16S rRNA gene sequencing and analysis were performed to depict the influence of BS and XBCJ over the global microbiome compositions of plant rhizosphere.


Asunto(s)
Bacillus , Brassica rapa , Bacillus subtilis/genética , ARN Ribosómico 16S/genética , Antioxidantes , Productos Agrícolas , Fenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA