Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Cell Rep ; 43(4): 108, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557872

RESUMEN

KEY MESSAGE: The CcGRXS12 gene protects plants from cellular oxidative damage that are caused by both biotic and abiotic stresses. The protein possesses GSH-disulphide oxidoreductase property but lacks Fe-S cluster assembly mechanism. Glutaredoxins (Grxs) are small, ubiquitous and multi-functional proteins. They are present in different compartments of plant cells. A chloroplast targeted Class I GRX (CcGRXS12) gene was isolated from Capsicum chinense during the pepper mild mottle virus (PMMoV) infection. Functional characterization of the gene was performed in Nicotiana benthamiana transgenic plants transformed with native C. chinense GRX (Nb:GRX), GRX-fused with GFP (Nb:GRX-GFP) and GRX-truncated for chloroplast sequences fused with GFP (Nb:Δ2MGRX-GFP). Overexpression of CcGRXS12 inhibited the PMMoV-I accumulation at the later stage of infection, accompanied with the activation of salicylic acid (SA) pathway pathogenesis-related (PR) transcripts and suppression of JA/ET pathway transcripts. Further, the reduced accumulation of auxin-induced Glutathione-S-Transferase (pCNT103) in CcGRXS12 overexpressing lines indicated that the protein could protect the plants from the oxidative stress caused by the virus. PMMoV-I infection increased the accumulation of pyridine nucleotides (PNs) mainly due to the reduced form of PNs (NAD(P)H), and it was high in Nb:GRX-GFP lines compared to other transgenic lines. Apart from biotic stress, CcGRXS12 protects the plants from abiotic stress conditions caused by H2O2 and herbicide paraquat. CcGRXS12 exhibited GSH-disulphide oxidoreductase activity in vitro; however, it was devoid of complementary Fe-S cluster assembly mechanism found in yeast. Overall, this study proves that CcGRXS12 plays a crucial role during biotic and abiotic stress in plants.


Asunto(s)
Capsicum , Tobamovirus , Capsicum/genética , Capsicum/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Peróxido de Hidrógeno , Oxidación-Reducción , Disulfuros
2.
Genomics ; 115(1): 110550, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565792

RESUMEN

Bacillus altitudinis FD48 is a multifunctional plant growth-promoting bacterium isolated from the phylloplane of rice and survives at --10 bars of osmotic potential (--1.0 MPa). It also serves as an ideal PGPM against drought stress by triggering antioxidant defense mechanisms in rice. To further unravel the genetic determinants of osmotic stress tolerance and plant growth-promoting traits, the whole genome sequence of FD48 was compared with its related strains. The whole genome analysis revealed a single chromosome with a total length of 3,752,533 bp (3.7 Mb) and an average G + C ratio of 41.19%. A total of 4029 genes were predicted, of which 3964 (98.4%) were protein-encoding genes (PEGs) and 65 (1.6%) were non-protein-coding genes. The interaction of FD48 with the host plants is associated with many chemotactic and motility-related genes. The ability of FD48 to colonize plants and maintain plant growth under adverse environmental conditions was evidenced by the presence of genes for plant nutrient acquisition, phytohormone synthesis, trehalose, choline, and glycine betaine biosynthesis, microbial volatile organic compounds (acetoin synthesis), heat and cold shock chaperones, translation elongation factor TU (Ef-Tu), siderophore production, DEAD/DEAH boxes, and non- ribosomal peptide synthase clusters (bacilysin, fengycin, and bacitracin). This study sheds light on the drought stress-resilient mechanism, metabolic pathways and potential activity, and plant growth-promoting traits of B. altitudinis FD48 at the genetic level.


Asunto(s)
Bacillus , Oryza , Oryza/genética , Sequías , Bacillus/genética , Plantas/genética , Análisis de Secuencia
3.
Arch Microbiol ; 202(10): 2739-2749, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32737540

RESUMEN

The signal orchestration between legumes and the rhizobia attribute to symbiotic nitrogen fixation through nodule formation. Root nodules serve as a nutrient-rich reservoir and harbor diverse microbial communities. However, the existence of non-rhizobial endophytes (NRE) and their role inside the root nodules are being explored; there is no evidence on yeast microflora inhabiting nodule niche. This study focused on unraveling the presence of yeast in the root nodules and their possible function in either nodulation or signal exchange. From the root nodules of blackgram, two yeast strains were isolated and identified as Candida glabrata VYP1 and Candida tropicalis VYW1 based on 18S rRNA gene sequencing and phylogeny. These strains possessed plant growth-promoting traits viz., IAA, ACC deaminase, siderophore, ammonia, and polyamine production. The functional capacity of endophytic yeast strains, and their interaction with Rhizobium sp. was further unveiled via profiling volatile organic compounds (VOC). Among the VOCs, α-glucopyranoside and pyrroloquinoline pitches a pivotal role in activating lectin pathways and phosphorous metabolism. Further, lectin pathways are crucial for nodulating bacterium, and our study showed that these endophytic yeasts assist nodulation by Rhizobium sp. via activating the nod factors. The plant growth-promoting traits of NRE yeast strains coupled with their metabolite production, could recruit them as potential drivers in the plant-microbe interaction.


Asunto(s)
Candida glabrata/aislamiento & purificación , Candida tropicalis/aislamiento & purificación , Endófitos/aislamiento & purificación , Vigna/microbiología , Compuestos Orgánicos Volátiles/análisis , Candida glabrata/genética , Candida tropicalis/genética , Liasas de Carbono-Carbono , Endófitos/clasificación , Interacciones Microbianas , Fijación del Nitrógeno/fisiología , Filogenia , Desarrollo de la Planta , Nodulación de la Raíz de la Planta , Pirroles/análisis , Quinolinas/análisis , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/fisiología
4.
Plants (Basel) ; 11(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35336657

RESUMEN

Traditional rice landraces are treasures for novel genes to develop climate-resilient cultivars. Seed viability and germination determine rice productivity under moisture stress. The present study evaluated 100 rice genotypes, including 85 traditional landraces and 15 improved cultivars from various agro-ecological zones of Tamil Nadu, along with moisture-stress-susceptible (IR 64) and moisture-stress-tolerant (IR 64 Drt1) checks. The landraces were screened over a range of osmotic potentials, namely (-) 1.0 MPa, (-) 1.25 MPa and (-) 1.5 MPa, for a period of 5 days in PEG-induced moisture stress. Physio-morphological traits, such as rate of germination, root and shoot length, vigor index, R/S ratio and relative water content (RWC), were assessed during early moisture stress at the maximum OP of (-) 1.5 MPa. The seed macromolecules, phytohormones (giberellic acid, auxin (IAA), cytokinin and abscisic acid), osmolytes and enzymatic antioxidants (catalase and superoxide dismutase) varied significantly between moisture stress and control treatments. The genotype Kuliyadichan registered more IAA and giberellic acid (44% and 35%, respectively, over moisture-stress-tolerant check (IR 64 Drt1), whereas all the landraces showed an elevated catalase activity, thus indicating that the tolerant landraces effectively eliminate oxidative damages. High-performance liquid chromatography analysis showed a reduction in cytokinin and an increase in ABA level under induced moisture stress. Hence, the inherent moisture-stress tolerance of six traditional landraces, such as Kuliyadichan, Rajalakshmi, Sahbhagi Dhan, Nootripathu, Chandaikar and Mallikar, was associated with metabolic responses, such as activation of hydrolytic enzymes, hormonal crosstalk, ROS signaling and antioxidant enzymes (especially catalase), when compared to the susceptible check, IR 64. Hence, these traditional rice landraces can serve as potential donors for introgression or pyramiding moisture-stress-tolerance traits toward developing climate-resilient rice cultivars.

5.
Microbiol Res ; 236: 126436, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32179388

RESUMEN

Trichoderma longibrachiatum EF5 is an endophytic fungal antagonist of rice. It is used for the control of soil-borne fungal pathogens-Sclerotium rolfsii and Macrophomina phaseolina. We demonstrate that T. longibrachiatum EF5 inhibits the growth of these pathogens on direct interaction as well as via the production of the microbial volatile organic compounds (mVOCs). The mVOCs reduced mycelial growth and inhibited the production of sclerotia by altering the mycelial structure. We profiled 138 mVOCs, when T. longibrachiatum EF5 interacted with the two pathogens. During these interactions, several compounds are up- or downregulated by T. longibrachiatum EF5, including longifolene, caryophyllene,1-Butanol 2-methyl, cedrene, and cuprenene. These compounds are involved in the biosynthetic pathways of the sesquiterpenoid and alkane, and the degradation pathway of trimethylamine. We provide an insight into the multiple modes by which T. longibrachiatum EF5 exerts antagonistic actions, such as hyperparasitism, competitions, and antibiosis via mVOCs. In contrast to their antimicrobial properties, these metabolites could also promote plant growth.


Asunto(s)
Agaricales/efectos de los fármacos , Antibiosis , Ascomicetos/efectos de los fármacos , Trichoderma/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Agaricales/crecimiento & desarrollo , Ascomicetos/crecimiento & desarrollo , Agentes de Control Biológico , Interacciones Microbianas , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Compuestos Orgánicos Volátiles/química
6.
Biotechnol Biofuels ; 13: 124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32684977

RESUMEN

BACKGROUND: The current production of bioethanol based on lignocellulosic biomass (LCB) highly depends on thermostable enzymes and extremophiles owing to less risk of contamination. Thermophilic bacterial cellulases are preferred over fungi due to their higher growth rate, presence of complex multi-enzymes, stability, and enhanced bioconversion efficiency. Corncob, underutilized biomass, ensures energy conservation due to high lignocellulosic and more fermentable sugar content. In the present study, the thermophilic bacterium Bacillus aerius CMCPS1, isolated from the thermal springs of Manikaran, Himachal Pradesh, India, was characterized in terms of its activity, stability, and hydrolytic capacity. A two-step process comprising: (i) a combined strategy of hydrodynamic cavitation reaction (HCR)-coupled enzymatic (LccH at 6.5 U) pretreatment for delignification and (ii) subsequent hydrolysis of pre-treated (HCR-LccH) corncob biomass (CCB) using a thermostable cocktail of CMCPS1 was adopted to validate the efficiency of the process. Some of the parameters studied include lignin reduction, cellulose increase, and saccharification efficiency. RESULT: Among the five isolates obtained by in situ enrichment on various substrates, B. aerius CMCPS1, isolated from hot springs, exhibited the maximum hydrolytic activity of 4.11. The GH activity of the CMCPS1 strain under submerged fermentation revealed maximum filter paper activity (FPA) and endoglucanase activity of 4.36 IU mL-1 and 2.98 IU mL-1, respectively, at 44 h. Similarly, the isolate produced exoglucanase and ß-glucosidase with an activity of 1.76 IU mL-1 and 1.23 IU mL-1 at 48 h, respectively. More specifically, the enzyme endo-1,4-ß-d glucanase E.C.3.2.1.4 (CMCase) produced by B. aerius CMCPS1 displayed wider stability to pH (3-9) and temperature (30-90 °C) than most fungal cellulases. Similarly, the activity of CMCase increased in the presence of organic solvents (118% at 30% acetone v/v). The partially purified CMCase from the culture supernatant of CMCPS1 registered 64% yield with twofold purification. The zymogram and SDS-PAGE analyses further confirmed the CMCase activity with an apparent molecular mass of 70 kDa. The presence of genes specific to cellulases, such as cellulose-binding domain CelB, confirmed the presence of GH family 46 and ß-glucosidase activity (GH3). The multifunctional cellulases of CMCPS1 were evaluated for their saccharification efficiency on laccase (LccH, a fungal laccase from Hexagonia hirta MSF2)-pretreated corncob in a HCR. The lignin and hemicelluloses removal efficiency of HCR-LccH was 54.1 and 6.57%, respectively, with an increase in cellulose fraction (42.25%). The saccharification efficiency of 55% was achieved with CMCPS1 multifunctional cellulases at 50 °C and pH 5.0. CONCLUSION: The multifunctional cellulase complex of B. aerius CMCPS1 is a potential biocatalyst for application in lignocellulosic biomass-based biorefineries. The saccharification ability of HCR-LccH-pretreated corncob at elevated temperatures would be an advantage for biofuel production from lignocellulosic biomass.

7.
PLoS One ; 14(7): e0219014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31269087

RESUMEN

Biotic stresses in plants have a significant impact on agricultural productivity. In the present study, in vivo experiments were conducted to determine the physiological responses of tomato (Solanum lycopersicum L.) seedlings by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus isolate BPSAC147 under greenhouse conditions. Further, photochemical quantum yield of photosystem II (PSII) (Fv/Fm), photochemical quenching (qP) and non-photochemical (NPQ) were calculated in seedlings inoculated with S. thermocarboxydus (T1) and were compared with control (T0) plants. Furthermore, the electron transport rate (ETR) of PSII exhibited a significant increase in T1 plants, relative to T0 plants. These results indicate that inoculation of tomato seedlings with S. thermocarboxydus had a positive effect on the process of photosynthesis, resulting in enhanced chlorophyll fluorescence parameters due to increased ETR in the thylakoid membrane. GC-MS analysis showed significant differences in the volatile compounds in the different treatments performed under greenhouse conditions. The present study suggests that S. thermocarboxydus can be used as new biocontrol agent to control Fusarium wilt in tomato crops and enhance productivity by enhancing photosynthesis.


Asunto(s)
Endófitos/fisiología , Solanum lycopersicum/microbiología , Streptomyces/fisiología , Agentes de Control Biológico , Clorofila/metabolismo , Resistencia a la Enfermedad , Transporte de Electrón , Endófitos/clasificación , Endófitos/genética , Fusarium/patogenicidad , Germinación , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Fotosíntesis , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Streptomyces/clasificación , Streptomyces/genética
8.
Genome Announc ; 6(9)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29496824

RESUMEN

The genome sequence of a temperature-tolerant strain, Bacillus altitudinis FD48, is described here. The reads were assembled into contigs with a total size of 3.7 Mb. The genome information will aid in understanding its role in alleviating stress in crop plants as a potential bioinoculant for agricultural applications.

9.
AMB Express ; 8(1): 168, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30324223

RESUMEN

The harnessing of biocatalysts from extreme environment hot spring niche for biomass conversion is significant and promising owing to the special characteristics of extremozymes attributed by intriguing biogeochemistry and extreme conditions of these environments. Hence, in the present study 38 bacterial isolates obtained from hot springs of Manikaran (~ 95 °C), Kalath (~ 50 °C) and Vasist (~ 65 °C) of Himachal Pradesh were screened for glycosyl hydrolases by in situ enrichment technique using lignocellulosic biomass (LCB). Based on their hydrolytic potential 5 isolates were selected and they were Bacillus tequilensis (VCB1, VCB2 and VSDB4), and B. licheniformis (KBFB2 and KBFB3). Cellulolytic activity assayed by growth under submerged fermentation showed that B. tequilensis VCB1 had maximum FPA activity (3.38 IU ml-1) in 48 h, while B. licheniformis KBFB3 excelled for endoglucanase (EGA of 4.81 IU ml-1 in 24 h) and cellobiase (0.71 IU ml-1 in 48 h) activities. Among all the thermophilic biocatalysts evaluated, highest exoglucanase (0.06 IU ml-1) activity was observed in B. tequilensis VSDB4 while endoglucanase of B. licheniformis KBFB3 showed optimum specific activity at pH 7 and 70 °C. Further, the presence of celS, celB and xlnB genes in the isolates suggest their possible role in biomass conversion. Protein profiling by SDS-PAGE analysis revealed that cellulase isoforms migrated with molecular masses of 75 kDa. The endoglucanase activity of promising strain B. licheniformis KBFB3 was enhanced in the presence of Ca2+, mercaptoethanol and sodium hypochlorite whereas moderately inhibited by Cu2+, Zn2+, urea, SDS and H2O2. The results of this study indicate scope for the possible development of novel biocatalysts with multifunctional thermostable glycosyl hydrolases from hot springs for efficient hydrolysis of the complex lignocellulosic biomass into simple sugars and other derived bioproducts leading to biomass valorization.

10.
PLoS One ; 12(10): e0186234, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29049321

RESUMEN

Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA), 28S ribosomal RNA (28S rRNA) and translation elongation factor 1- alpha (EF 1α). Ethyl acetate extract of strain MJ31displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS) and non ribosomal peptide synthetase (NRPS) genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin) were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS) analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites.


Asunto(s)
Antiinfecciosos/metabolismo , Aspergillus/metabolismo , Cromatografía Liquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Mirabilis/microbiología , Espectrometría de Masa por Ionización de Electrospray/métodos , Antiinfecciosos/farmacología , Aspergillus/clasificación , Bacillus subtilis/efectos de los fármacos , Candida/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Filogenia , Reacción en Cadena de la Polimerasa , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA