Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2314899121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954552

RESUMEN

Although climate change is expected to drive tree species toward colder and wetter regions of their distribution, broadscale empirical evidence is lacking. One possibility is that past and present human activities in forests obscure or alter the effects of climate. Here, using data from more than two million monitored trees from 73 widely distributed species, we quantify changes in tree species density within their climatic niches across Northern Hemisphere forests. We observe a reduction in mean density across species, coupled with a tendency toward increasing tree size. However, the direction and magnitude of changes in density exhibit considerable variability between species, influenced by stand development that results from previous stand-level disturbances. Remarkably, when accounting for stand development, our findings show a significant change in density toward cold and wet climatic conditions for 43% of the species, compared to only 14% of species significantly changing their density toward warm and arid conditions in both early- and late-development stands. The observed changes in climate-driven density showed no clear association with species traits related to drought tolerance, recruitment and dispersal capacity, or resource use, nor with the temperature or aridity affiliation of the species, leaving the underlying mechanism uncertain. Forest conservation policies and associated management strategies might want to consider anticipated long-term species range shifts alongside the integration of contemporary within-distribution density changes.


Asunto(s)
Cambio Climático , Bosques , Árboles , Árboles/crecimiento & desarrollo , Árboles/fisiología , Ecosistema , Clima , Sequías , Temperatura
2.
Glob Ecol Biogeogr ; 33(1): 100-115, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38516343

RESUMEN

Aim: The sweeping transformation of the biosphere by humans over the last millennia leaves only limited windows into its natural state. Much of the forests that dominated temperate and southern boreal regions have been lost and those that remain typically bear a strong imprint of forestry activities and past land-use change, which have changed forest age structure and composition. Here, we ask how would the dynamics, structure and function of temperate and boreal forests differ in the absence of forestry and the legacies of land-use change? Location: Global. Time Period: 2001-2014, integrating over the legacy of disturbance events from 1875 to 2014. Major Taxa Studied: Trees. Methods: We constructed an empirical model of natural disturbance probability as a function of community traits and climate, based on observed disturbance rate and form across 77 protected forest landscapes distributed across three continents. Coupling this within a dynamic vegetation model simulating forest composition and structure, we generated estimates of stand-replacing disturbance return intervals in the absence of forestry for northern hemisphere temperate and boreal forests. We then applied this model to calculate forest stand age structure and carbon turnover rates. Results: Comparison with observed disturbance rates revealed human activities to have almost halved the median return interval of stand-replacing disturbances across temperate forest, with more moderate changes in the boreal region. The resulting forests are typically much younger, especially in northern Europe and south-eastern North America, resulting in a 32% reduction in vegetation carbon turnover time across temperate forests and a 7% reduction for boreal forests. Conclusions: The current northern hemisphere temperate forest age structure is dramatically out of equilibrium with its natural disturbance regimes. Shifts towards more nature-based approaches to forest policy and management should more explicitly consider the current disturbance surplus, as it substantially impacts carbon dynamics and litter (including deadwood) stocks.

3.
Psychol Med ; 53(1): 88-102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34127158

RESUMEN

BACKGROUND: Violent criminal offenders with personality disorders (PD's) can cause immense harm, but are often deemed untreatable. This study aimed to conduct a randomized clinical trial to test the effectiveness of long-term psychotherapy for rehabilitating offenders with PDs. METHODS: We compared schema therapy (ST), an evidence-based psychotherapy for PDs, to treatment-as-usual (TAU) at eight high-security forensic hospitals in the Netherlands. Patients in both conditions received multiple treatment modalities and differed only in the individual, study-specific therapy they received. One-hundred-three male offenders with antisocial, narcissistic, borderline, or paranoid PDs, or Cluster B PD-not-otherwise-specified, were assigned to 3 years of ST or TAU and assessed every 6 months. Primary outcomes were rehabilitation, involving gradual reintegration into the community, and PD symptoms. RESULTS: Patients in both conditions showed moderate to large improvements in outcomes. ST was superior to TAU on both primary outcomes - rehabilitation (i.e. attaining supervised and unsupervised leave) and PD symptoms - and six of nine secondary outcomes, with small to moderate advantages over TAU. ST patients moved more rapidly through rehabilitation (supervised leave, treatment*time: F(5308) = 9.40, p < 0.001; unsupervised leave, treatment*time: F(5472) = 3.45, p = 0.004), and showed faster improvements on PD scales (treatment*time: t(1387) = -2.85, p = 0.005). CONCLUSIONS: These findings contradict pessimistic views on the treatability of violent offenders with PDs, and support the effectiveness of long-term psychotherapy for rehabilitating these patients, facilitating their re-entry into the community.


Asunto(s)
Criminales , Humanos , Masculino , Terapia de Esquemas , Agresión , Trastornos de la Personalidad/terapia , Trastornos de la Personalidad/diagnóstico , Psicoterapia
4.
Proc Natl Acad Sci U S A ; 117(38): 23401-23407, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32887804

RESUMEN

Warm periods in Earth's history offer opportunities to understand the dynamics of the Earth system under conditions that are similar to those expected in the near future. The Middle Pliocene warm period (MPWP), from 3.3 to 3.0 My B.P, is the most recent time when atmospheric CO2 levels were as high as today. However, climate model simulations of the Pliocene underestimate high-latitude warming that has been reconstructed from fossil pollen samples and other geological archives. One possible reason for this is that enhanced non-CO2 trace gas radiative forcing during the Pliocene, including from methane (CH4), has not been included in modeling. We use a suite of terrestrial biogeochemistry models forced with MPWP climate model simulations from four different climate models to produce a comprehensive reconstruction of the MPWP CH4 cycle, including uncertainty. We simulate an atmospheric CH4 mixing ratio of 1,000 to 1,200 ppbv, which in combination with estimates of radiative forcing from N2O and O3, contributes a non-CO2 radiative forcing of 0.9 [Formula: see text] (range 0.6 to 1.1), which is 43% (range 36 to 56%) of the CO2 radiative forcing used in MPWP climate simulations. This additional forcing would cause a global surface temperature increase of 0.6 to 1.0 °C, with amplified changes at high latitudes, improving agreement with geological evidence of Middle Pliocene climate. We conclude that natural trace gas feedbacks are critical for interpreting climate warmth during the Pliocene and potentially many other warm phases of the Cenezoic. These results also imply that using Pliocene CO2 and temperature reconstructions alone may lead to overestimates of the fast or Charney climate sensitivity.

5.
Glob Chang Biol ; 28(1): 167-181, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478595

RESUMEN

Modern food production is spatially concentrated in global "breadbaskets." A major unresolved question is whether these peak production regions will shift poleward as the climate warms, allowing some recovery of potential climate-related losses. While agricultural impacts studies to date have focused on currently cultivated land, the Global Gridded Crop Model Intercomparison Project (GGCMI) Phase 2 experiment allows us to assess changes in both yields and the location of peak productivity regions under warming. We examine crop responses under projected end of century warming using seven process-based models simulating five major crops (maize, rice, soybeans, and spring and winter wheat) with a variety of adaptation strategies. We find that in no-adaptation cases, when planting date and cultivar choices are held fixed, regions of peak production remain stationary and yield losses can be severe, since growing seasons contract strongly with warming. When adaptations in management practices are allowed (cultivars that retain growing season length under warming and modified planting dates), peak productivity zones shift poleward and yield losses are largely recovered. While most growing-zone shifts are ultimately limited by geography, breadbaskets studied here move poleward over 600 km on average by end of the century under RCP 8.5. These results suggest that agricultural impacts assessments can be strongly biased if restricted in spatial area or in the scope of adaptive behavior considered. Accurate evaluation of food security under climate change requires global modeling and careful treatment of adaptation strategies.


Asunto(s)
Cambio Climático , Agricultores , Adaptación Psicológica , Agricultura , Productos Agrícolas , Humanos
7.
Proc Natl Acad Sci U S A ; 116(10): 4382-4387, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782807

RESUMEN

Although the existence of a large carbon sink in terrestrial ecosystems is well-established, the drivers of this sink remain uncertain. It has been suggested that perturbations to forest demography caused by past land-use change, management, and natural disturbances may be causing a large component of current carbon uptake. Here we use a global compilation of forest age observations, combined with a terrestrial biosphere model with explicit modeling of forest regrowth, to partition the global forest carbon sink between old-growth and regrowth stands over the period 1981-2010. For 2001-2010 we find a carbon sink of 0.85 (0.66-0.96) Pg year-1 located in intact old-growth forest, primarily in the moist tropics and boreal Siberia, and 1.30 (1.03-1.96) Pg year-1 located in stands regrowing after past disturbance. Approaching half of the sink in regrowth stands would have occurred from demographic changes alone, in the absence of other environmental changes. These age-constrained results show consistency with those simulated using an ensemble of demographically-enabled terrestrial biosphere models following an independent reconstruction of historical land use and management. We estimate that forests will accumulate an additional 69 (44-131) Pg C in live biomass from changes in demography alone if natural disturbances, wood harvest, and reforestation continue at rates comparable to those during 1981-2010. Our results confirm that it is not possible to understand the current global terrestrial carbon sink without accounting for the sizeable sink due to forest demography. They also imply that a large portion of the current terrestrial carbon sink is strictly transient in nature.


Asunto(s)
Biomasa , Secuestro de Carbono , Carbono/metabolismo , Bosques , Modelos Biológicos , Árboles/crecimiento & desarrollo
8.
New Phytol ; 230(5): 1761-1771, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33577084

RESUMEN

Grasslands are key repositories of biodiversity and carbon storage and are heavily impacted by effects of global warming and changes in precipitation regimes. Patterns of grassland dynamics associated with variability in future climate conditions across spatiotemporal scales are yet to be adequately quantified. Here, we performed a global meta-analysis of year and growing season sensitivities of vegetation aboveground biomass (AGB), aboveground net primary productivity (ANPP), and species richness (SR) and diversity (Shannon index, H) to experimental climate warming and precipitation shifts. All four variables were sensitive to climate change. Their sensitivities to shifts in precipitation were correlated with local background water availability, such as mean annual precipitation (MAP) and aridity, and AGB and ANPP sensitivities were greater in dry habitats than in nonwater-limited habitats. There was no effect of duration of experiment (short vs long term) on sensitivities. Temporal trends in ANPP and SR sensitivity depended on local water availability; ANPP sensitivity to warming increased over time and SR sensitivity to irrigation decreased over time. Our results provide a global overview of the sensitivities of grassland function and diversity to climate change that will improve the understanding of ecological responses across spatiotemporal scales and inform policies for conservation in dry climates.


Asunto(s)
Pradera , Agua , Biomasa , Cambio Climático , Ecosistema , Lluvia
9.
Glob Chang Biol ; 27(16): 3870-3882, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33998112

RESUMEN

Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change.


Asunto(s)
Producción de Cultivos , Fitomejoramiento , Agricultura , Cambio Climático , Productos Agrícolas
10.
Glob Chang Biol ; 26(7): 4042-4055, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32347650

RESUMEN

Climate warming is currently advancing spring leaf-out of temperate and boreal trees, enhancing net primary productivity (NPP) of forests. However, it remains unclear whether this trend will continue, preventing for accurate projections of ecosystem functioning and climate feedbacks. Several ecophysiological mechanisms have been proposed to regulate the timing of leaf emergence in response to changing environmental cues, but the relative importance of those mechanisms remains unclear. Here, we use 727,401 direct phenological observations of common European forest trees to examine the dominant controls on leaf-out. Using the emerging mechanisms, we forecast future trajectories of spring arrival and evaluate the consequences for forest carbon dynamics. By representing hypothesized relationships with autumn temperature, winter chilling, and the timing of spring onset, we accurately predicted reductions in the advance of leaf-out. There was a strong consensus between our empirical model and existing process-based models, revealing that the advance in leaf-out will not exceed 2 weeks over the rest of the century. We further estimate that, under a 'business-as-usual' climate scenario, earlier spring arrival will enhance NPP of temperate and boreal forests by ~0.2 Gt per year at the end of the century. In contrast, previous estimates based on a simple degree-day model range around 0.8 Gt. As such, the expected NPP is drastically reduced in our updated model relative to previous estimates-by a total of ~25 Gt over the rest of the century. These findings reveal important environmental constraints on the productivity of broad-leaved deciduous trees and highlight that shifting spring phenology is unlikely to slow the rate of warming by offsetting anthropogenic carbon emissions.


Asunto(s)
Ecosistema , Árboles , Clima , Cambio Climático , Bosques , Hojas de la Planta , Estaciones del Año , Temperatura
11.
Glob Chang Biol ; 24(5): 2079-2092, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29105233

RESUMEN

Biotic disturbances (BDs, for example, insects, pathogens, and wildlife herbivory) substantially affect boreal and temperate forest ecosystems globally. However, accurate impact assessments comprising larger spatial scales are lacking to date although these are critically needed given the expected disturbance intensification under a warming climate. Hence, our quantitative knowledge on current and future BD impacts, for example, on forest carbon (C) cycling, is strongly limited. We extended a dynamic global vegetation model to simulate ecosystem response to prescribed tree mortality and defoliation due to multiple biotic agents across United States forests during the period 1997-2015, and quantified the BD-induced vegetation C loss, that is, C fluxes from live vegetation to dead organic matter pools. Annual disturbance fractions separated by BD type (tree mortality and defoliation) and agent (bark beetles, defoliator insects, other insects, pathogens, and other biotic agents) were calculated at 0.5° resolution from aerial-surveyed data and applied within the model. Simulated BD-induced C fluxes totaled 251.6 Mt C (annual mean: 13.2 Mt C year-1 , SD ±7.3 Mt C year-1 between years) across the study domain, to which tree mortality contributed 95% and defoliation 5%. Among BD agents, bark beetles caused most C fluxes (61%), and total insect-induced C fluxes were about five times larger compared to non-insect agents, for example, pathogens and wildlife. Our findings further demonstrate that BD-induced C cycle impacts (i) displayed high spatio-temporal variability, (ii) were dominated by different agents across BD types and regions, and (iii) were comparable in magnitude to fire-induced impacts. This study provides the first ecosystem model-based assessment of BD-induced impacts on forest C cycling at the continental scale and going beyond single agent-host systems, thus allowing for comparisons across regions, BD types, and agents. Ultimately, a perspective on the potential and limitations of a more process-based incorporation of multiple BDs in ecosystem models is offered.


Asunto(s)
Ciclo del Carbono , Bosques , Modelos Biológicos , Árboles/fisiología , Animales , Carbono/metabolismo , Clima , Cambio Climático , Estados Unidos
12.
Glob Chang Biol ; 24(7): 2791-2809, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29485759

RESUMEN

Land use contributes to environmental change, but is also influenced by such changes. Climate and atmospheric carbon dioxide (CO2 ) levels' changes alter agricultural crop productivity, plant water requirements and irrigation water availability. The global food system needs to respond and adapt to these changes, for example, by altering agricultural practices, including the crop types or intensity of management, or shifting cultivated areas within and between countries. As impacts and associated adaptation responses are spatially specific, understanding the land use adaptation to environmental changes requires crop productivity representations that capture spatial variations. The impact of variation in management practices, including fertiliser and irrigation rates, also needs to be considered. To date, models of global land use have selected agricultural expansion or intensification levels using relatively aggregate spatial representations, typically at a regional level, that are not able to characterise the details of these spatially differentiated responses. Here, we show results from a novel global modelling approach using more detailed biophysically derived yield responses to inputs with greater spatial specificity than previously possible. The approach couples a dynamic global vegetative model (LPJ-GUESS) with a new land use and food system model (PLUMv2), with results benchmarked against historical land use change from 1970. Land use outcomes to 2100 were explored, suggesting that increased intensity of climate forcing reduces the inputs required for food production, due to the fertilisation and enhanced water use efficiency effects of elevated atmospheric CO2 concentrations, but requiring substantial shifts in the global and local patterns of production. The results suggest that adaptation in the global agriculture and food system has substantial capacity to diminish the negative impacts and gain greater benefits from positive outcomes of climate change. Consequently, agricultural expansion and intensification may be lower than found in previous studies where spatial details and processes consideration were more constrained.


Asunto(s)
Agricultura/métodos , Dióxido de Carbono , Cambio Climático , Atmósfera , Productos Agrícolas , Modelos Biológicos , Agua
13.
Glob Chang Biol ; 24(7): 3025-3038, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29569788

RESUMEN

Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy.


Asunto(s)
Carbono/metabolismo , Cambio Climático , Biomasa , Ciclo del Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Conservación de los Recursos Naturales , Productos Agrícolas , Bosques , Suelo , Incertidumbre
14.
Glob Chang Biol ; 24(8): 3416-3435, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29688596

RESUMEN

The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze-thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO2 inversions using a CASA-GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic-onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO2 inversions, with better correlation to above-freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over multiple years and at additional subarctic flux towers are critically needed.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis , Taiga , Tundra , Alaska , Ciclo del Carbono , Estaciones del Año , Suelo
15.
Proc Natl Acad Sci U S A ; 111(9): 3268-73, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344314

RESUMEN

Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.


Asunto(s)
Agricultura/métodos , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Modelos Teóricos , Nitrógeno/análisis , Agricultura/estadística & datos numéricos , Simulación por Computador , Predicción , Geografía , Medición de Riesgo , Temperatura
16.
Proc Natl Acad Sci U S A ; 111(9): 3233-8, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344270

RESUMEN

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ambiente , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Política Pública , Agricultura/estadística & datos numéricos , Simulación por Computador , Ecosistema , Geografía , Calentamiento Global/economía , Humanos , Malaria/epidemiología , Temperatura , Abastecimiento de Agua/estadística & datos numéricos
17.
Glob Chang Biol ; 22(3): 1008-28, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26301476

RESUMEN

Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Contaminación Ambiental/efectos adversos , Suelo
18.
Plant Cell Environ ; 38(9): 1896-912, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25255900

RESUMEN

Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment.


Asunto(s)
Clima , Árboles/fisiología , Compuestos Orgánicos Volátiles , Riego Agrícola , Agricultura/métodos , Cambio Climático , Ecosistema , Ingeniería Genética/métodos , Fitomejoramiento/métodos , Terpenos/análisis , Terpenos/química , Compuestos Orgánicos Volátiles/análisis
19.
Ultrasound Obstet Gynecol ; 44(5): 595-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24532059

RESUMEN

OBJECTIVES: Fetal growth restriction is a strong risk factor for stillbirth. We compared the performance of three fetal growth curves - customized, ultrasound (Hadlock) and population - in identifying abnormally grown fetuses at risk of stillbirth. METHODS: We performed a case-control study of singleton stillbirths (delivered between 2000 and 2010) at one center. Four liveborn controls were randomly identified for each stillbirth. Ultrasound-estimated fetal weight within 1 month prior to delivery was used to calculate growth percentiles for each fetus using three fetal growth norms. Sensitivities and odds ratios for stillbirth, as well as odds of abnormal growth according to formula, were calculated. RESULTS: There were 49 stillbirths and 197 live births. Using the customized norms, growth of the fetuses destined to be stillborn was bimodal, with both more small-for-gestational-age (SGA; < 10(th) percentile) and large-for-gestational-age (LGA; ≥ 90(th) percentile) fetuses. Odds of being abnormally grown were significantly higher using ultrasound compared with population norms (P = 0.02) but were not statistically different using ultrasound and customized norms (P = 0.21). Sensitivity for identification of SGA on ultrasound as a predictor of stillbirth was higher using customized (39%; 95% CI, 24-54%) or ultrasound (33%; 95% CI, 19-47%), rather than population (14%; 95% CI, 4-25%), norms. CONCLUSIONS: Among fetuses destined to be stillborn, customized and ultrasound norms identified a greater proportion of both SGA and LGA estimated fetal weights. The customized norms performed best in identifying death among SGA fetuses. These results should be interpreted within the limitations of the study design.


Asunto(s)
Retardo del Crecimiento Fetal/diagnóstico por imagen , Recién Nacido Pequeño para la Edad Gestacional/fisiología , Mortinato , Adulto , Peso Corporal/fisiología , Estudios de Casos y Controles , Femenino , Desarrollo Fetal/fisiología , Peso Fetal/fisiología , Humanos , Recién Nacido , Edad Materna , Oportunidad Relativa , Embarazo , Estándares de Referencia , Factores de Riesgo , Ultrasonografía Prenatal
20.
Environ Manage ; 53(2): 300-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24178126

RESUMEN

The climate change mitigation mechanism Reducing Emissions from Deforestation and Forest Degradation in developing countries (REDD+) is currently being negotiated under the United Nations Framework Convention on Climate Change (UNFCCC). Integrating biodiversity monitoring into REDD+ facilitates compliance with the safeguards stipulated by the UNFCCC to exclude environmental risks. Interviews with actors engaged in REDD+ implementation and biodiversity conservation at the national and sub-national level in Peru (n = 30) and a literature review (n = 58) were conducted to pinpoint constraints and opportunities for monitoring effects of REDD+ management interventions on biodiversity, and to identify relevant biodiversity data and indicators. It was found that particularly sub-national actors, who were frequently involved in REDD+ pilot projects, acknowledge the availability of biodiversity data. Actors at both the national and sub-national levels, however, criticized data gaps and data being scattered across biodiversity research organizations. Most of the literature reviewed (78 %) included indicators on the state of certain biodiversity aspects, especially mammals. Indicators for pressure on biodiversity, impacts on environmental functions, or policy responses to environmental threats were addressed less frequently (31, 21, and 10 %, respectively). Integrating biodiversity concerns in carbon monitoring schemes was considered to have potential, although few specific examples were identified. The involvement of biodiversity research organizations in sub-national REDD+ activities enhances monitoring capacities. It is discussed how improvements in collaboration among actors from the project to the national level could facilitate the evaluation of existing information at the national level. Monitoring changes in ecosystem services may increase the ecological and socioeconomic viability of REDD+.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Árboles , Cambio Climático , Países en Desarrollo , Perú , Factores Socioeconómicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA