Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Res Notes ; 16(1): 219, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710302

RESUMEN

OBJECTIVES: This release note describes the Maize GxE project datasets within the Genomes to Fields (G2F) Initiative. The Maize GxE project aims to understand genotype by environment (GxE) interactions and use the information collected to improve resource allocation efficiency and increase genotype predictability and stability, particularly in scenarios of variable environmental patterns. Hybrids and inbreds are evaluated across multiple environments and phenotypic, genotypic, environmental, and metadata information are made publicly available. DATA DESCRIPTION: The datasets include phenotypic data of the hybrids and inbreds evaluated in 30 locations across the US and one location in Germany in 2020 and 2021, soil and climatic measurements and metadata information for all environments (combination of year and location), ReadMe, and description files for each data type. A set of common hybrids is present in each environment to connect with previous evaluations. Each environment had a collaborator responsible for collecting and submitting the data, the GxE coordination team combined all the collected information and removed obvious erroneous data. Collaborators received the combined data to use, verify and declare that the data generated in their own environments was accurate. Combined data is released to the public with minimal filtering to maintain fidelity to the original data.


Asunto(s)
Asignación de Recursos , Zea mays , Zea mays/genética , Estaciones del Año , Genotipo , Alemania
2.
BMC Genom Data ; 24(1): 29, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231352

RESUMEN

OBJECTIVES: This report provides information about the public release of the 2018-2019 Maize G X E project of the Genomes to Fields (G2F) Initiative datasets. G2F is an umbrella initiative that evaluates maize hybrids and inbred lines across multiple environments and makes available phenotypic, genotypic, environmental, and metadata information. The initiative understands the necessity to characterize and deploy public sources of genetic diversity to face the challenges for more sustainable agriculture in the context of variable environmental conditions. DATA DESCRIPTION: Datasets include phenotypic, climatic, and soil measurements, metadata information, and inbred genotypic information for each combination of location and year. Collaborators in the G2F initiative collected data for each location and year; members of the group responsible for coordination and data processing combined all the collected information and removed obvious erroneous data. The collaborators received the data before the DOI release to verify and declare that the data generated in their own locations was accurate. ReadMe and description files are available for each dataset. Previous years of evaluation are already publicly available, with common hybrids present to connect across all locations and years evaluated since this project's inception.


Asunto(s)
Genoma de Planta , Zea mays , Fenotipo , Zea mays/genética , Estaciones del Año , Genotipo , Genoma de Planta/genética
3.
G3 (Bethesda) ; 11(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33585867

RESUMEN

High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.) hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best characterization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was modeled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.


Asunto(s)
Interacción Gen-Ambiente , Zea mays , Genotipo , Modelos Genéticos , Fenotipo , Fitomejoramiento
4.
Front Genet ; 11: 592769, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33763106

RESUMEN

Genomic prediction provides an efficient alternative to conventional phenotypic selection for developing improved cultivars with desirable characteristics. New and improved methods to genomic prediction are continually being developed that attempt to deal with the integration of data types beyond genomic information. Modern automated weather systems offer the opportunity to capture continuous data on a range of environmental parameters at specific field locations. In principle, this information could characterize training and target environments and enhance predictive ability by incorporating weather characteristics as part of the genotype-by-environment (G×E) interaction component in prediction models. We assessed the usefulness of including weather data variables in genomic prediction models using a naïve environmental kinship model across 30 environments comprising the Genomes to Fields (G2F) initiative in 2014 and 2015. Specifically four different prediction scenarios were evaluated (i) tested genotypes in observed environments; (ii) untested genotypes in observed environments; (iii) tested genotypes in unobserved environments; and (iv) untested genotypes in unobserved environments. A set of 1,481 unique hybrids were evaluated for grain yield. Evaluations were conducted using five different models including main effect of environments; general combining ability (GCA) effects of the maternal and paternal parents modeled using the genomic relationship matrix; specific combining ability (SCA) effects between maternal and paternal parents; interactions between genetic (GCA and SCA) effects and environmental effects; and finally interactions between the genetics effects and environmental covariates. Incorporation of the genotype-by-environment interaction term improved predictive ability across all scenarios. However, predictive ability was not improved through inclusion of naive environmental covariates in G×E models. More research should be conducted to link the observed weather conditions with important physiological aspects in plant development to improve predictive ability through the inclusion of weather data.

5.
BMC Res Notes ; 13(1): 71, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051026

RESUMEN

OBJECTIVES: Advanced tools and resources are needed to efficiently and sustainably produce food for an increasing world population in the context of variable environmental conditions. The maize genomes to fields (G2F) initiative is a multi-institutional initiative effort that seeks to approach this challenge by developing a flexible and distributed infrastructure addressing emerging problems. G2F has generated large-scale phenotypic, genotypic, and environmental datasets using publicly available inbred lines and hybrids evaluated through a network of collaborators that are part of the G2F's genotype-by-environment (G × E) project. This report covers the public release of datasets for 2014-2017. DATA DESCRIPTION: Datasets include inbred genotypic information; phenotypic, climatic, and soil measurements and metadata information for each testing location across years. For a subset of inbreds in 2014 and 2015, yield component phenotypes were quantified by image analysis. Data released are accompanied by README descriptions. For genotypic and phenotypic data, both raw data and a version without outliers are reported. For climatic data, a version calibrated to the nearest airport weather station and a version without outliers are reported. The 2014 and 2015 datasets are updated versions from the previously released files [1] while 2016 and 2017 datasets are newly available to the public.


Asunto(s)
Genoma de Planta/genética , Fitomejoramiento , Zea mays/genética , Conjuntos de Datos como Asunto , Genotipo , Fenotipo
6.
BMC Res Notes ; 11(1): 452, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986751

RESUMEN

OBJECTIVES: Crop improvement relies on analysis of phenotypic, genotypic, and environmental data. Given large, well-integrated, multi-year datasets, diverse queries can be made: Which lines perform best in hot, dry environments? Which alleles of specific genes are required for optimal performance in each environment? Such datasets also can be leveraged to predict cultivar performance, even in uncharacterized environments. The maize Genomes to Fields (G2F) Initiative is a multi-institutional organization of scientists working to generate and analyze such datasets from existing, publicly available inbred lines and hybrids. G2F's genotype by environment project has released 2014 and 2015 datasets to the public, with 2016 and 2017 collected and soon to be made available. DATA DESCRIPTION: Datasets include DNA sequences; traditional phenotype descriptions, as well as detailed ear, cob, and kernel phenotypes quantified by image analysis; weather station measurements; and soil characterizations by site. Data are released as comma separated value spreadsheets accompanied by extensive README text descriptions. For genotypic and phenotypic data, both raw data and a version with outliers removed are reported. For weather data, two versions are reported: a full dataset calibrated against nearby National Weather Service sites and a second calibrated set with outliers and apparent artifacts removed.


Asunto(s)
Conjuntos de Datos como Asunto , Genotipo , Fenotipo , Zea mays/genética , Ambiente , Genoma de Planta , Endogamia , Fitomejoramiento , Estaciones del Año , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA