Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomech ; 116: 110229, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33485143

RESUMEN

The difficulty of estimating joint kinematics remains a critical barrier toward widespread use of inertial measurement units in biomechanics. Traditional sensor-fusion filters are largely reliant on magnetometer readings, which may be disturbed in uncontrolled environments. Careful sensor-to-segment alignment and calibration strategies are also necessary, which may burden users and lead to further error in uncontrolled settings. We introduce a new framework that combines deep learning and top-down optimization to accurately predict lower extremity joint angles directly from inertial data, without relying on magnetometer readings. We trained deep neural networks on a large set of synthetic inertial data derived from a clinical marker-based motion-tracking database of hundreds of subjects. We used data augmentation techniques and an automated calibration approach to reduce error due to variability in sensor placement and limb alignment. On left-out subjects, lower extremity kinematics could be predicted with a mean (±STD) root mean squared error of less than 1.27° (±0.38°) in flexion/extension, less than 2.52° (±0.98°) in ad/abduction, and less than 3.34° (±1.02°) internal/external rotation, across walking and running trials. Errors decreased exponentially with the amount of training data, confirming the need for large datasets when training deep neural networks. While this framework remains to be validated with true inertial measurement unit data, the results presented here are a promising advance toward convenient estimation of gait kinematics in natural environments. Progress in this direction could enable large-scale studies and offer new perspective into disease progression, patient recovery, and sports biomechanics.


Asunto(s)
Aprendizaje Profundo , Fenómenos Biomecánicos , Marcha , Humanos , Rango del Movimiento Articular , Caminata
2.
Med Biol Eng Comput ; 58(1): 211-225, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31823114

RESUMEN

In recent years, gait analysis outside the laboratory attracts more and more attention in clinical applications as well as in life sciences. Wearable sensors such as inertial sensors show high potential in these applications. Unfortunately, they can only measure kinematic motions patterns indirectly and the outcome is currently jeopardized by measurement discrepancies compared with the gold standard of optical motion tracking. The aim of this study was to overcome the limitation of measurement discrepancies and the missing information on kinetic motion parameters using a machine learning application based on artificial neural networks. For this purpose, inertial sensor data-linear acceleration and angular rate-was simulated from a database of optical motion tracking data and used as input for a feedforward and long short-term memory neural network to predict the joint angles and moments of the lower limbs during gait. Both networks achieved mean correlation coefficients higher than 0.80 in the minor motion planes, and correlation coefficients higher than 0.98 in the sagittal plane. These results encourage further applications of artificial intelligence to support gait analysis. Graphical Abstract The graphical abstract displays the processing of the data: IMU data is used as input to a feedforward and a long short-term memory neural network to predict the joint kinematics and kinetics of the lower limbs during gait.


Asunto(s)
Marcha/fisiología , Articulaciones/fisiología , Extremidad Inferior/fisiología , Redes Neurales de la Computación , Fenómenos Biomecánicos , Bases de Datos como Asunto , Humanos , Cinética , Modelos Biológicos
3.
J Biomech ; 84: 81-86, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30585155

RESUMEN

The low cost and ease of use of inertial measurement units (IMUs) make them an attractive option for motion analysis tasks that cannot be easily measured in a laboratory. To date, only a limited amount of research has been conducted comparing commercial IMU systems to optoelectronic systems, the gold standard, for everyday tasks like stair climbing and inclined walking. In this paper, the 3D joint angles of the lower limbs are determined using both an IMU system and an optoelectronic system for twelve participants during stair ascent and descent, and inclined, declined and level walking. Three different datasets based on different hardware and anatomical models were collected for the same movement in an effort to determine the cause and quantify the errors involved with the analysis. Firstly, to calculate software errors, two different anatomical models were compared for one hardware system. Secondly, to calculate hardware errors, results were compared between two different measurement systems using the same anatomical model. Finally, the overall error between both systems with their native anatomical models was calculated. Statistical analysis was performed using statistical parametric mapping. When both systems were evaluated based on the same anatomical model, the number of trials with significant differences decreased markedly. Thus, the differences in joint angle measurement can mainly be attributed to the variability in the anatomical models used for calculations and not to the IMU hardware.


Asunto(s)
Actividades Cotidianas , Fenómenos Mecánicos , Monitoreo Fisiológico/instrumentación , Caminata , Adulto , Algoritmos , Fenómenos Biomecánicos , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA