Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(16): e2221253120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37043535

RESUMEN

The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen Pseudomonas aeruginosa for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.


Asunto(s)
Antibacterianos , Sideróforos , Sideróforos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Ligandos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Hierro/metabolismo , Transducción de Señal , Pseudomonas aeruginosa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417315

RESUMEN

Gram-negative bacteria take up the essential ion Fe3+ as ferric-siderophore complexes through their outer membrane using TonB-dependent transporters. However, the subsequent route through the inner membrane differs across many bacterial species and siderophore chemistries and is not understood in detail. Here, we report the crystal structure of the inner membrane protein FoxB (from Pseudomonas aeruginosa) that is involved in Fe-siderophore uptake. The structure revealed a fold with two tightly bound heme molecules. In combination with in vitro reduction assays and in vivo iron uptake studies, these results establish FoxB as an inner membrane reductase involved in the release of iron from ferrioxamine during Fe-siderophore uptake.


Asunto(s)
Proteínas Bacterianas/química , Hierro/metabolismo , Proteínas de la Membrana/química , Oxidorreductasas/química , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Proteínas de la Membrana/metabolismo , Oxidorreductasas/metabolismo , Conformación Proteica , Pseudomonas aeruginosa/crecimiento & desarrollo
3.
J Biol Chem ; 298(10): 102495, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115462

RESUMEN

P2X7 receptors are nonselective cation channels that are activated by extracellular ATP and play important roles in inflammation. They differ from other P2X family members by a large intracellular C-terminus that mediates diverse signaling processes that are little understood. A recent cryo-EM study revealed that the C-terminus of the P2X7 receptor forms a unique cytoplasmic ballast domain that possesses a GDP-binding site as well as a dinuclear Zn2+ site. However, the molecular basis for the regulatory function of the ballast domain as well as the interplay between the various ligands remain unclear. Here, we successfully expressed a soluble trimeric P2X7 ballast domain (P2X7BD) and characterized its ligand binding properties using a biophysical approach. We identified calmodulin (CaM)-binding regions within the ballast domain and found that binding of Ca2+-CaM and GDP to P2X7BD have opposite effects on its stability. Small-angle X-ray scattering experiments indicate that Ca2+-CaM binding disrupts the trimeric state of P2X7BD. Our results provide a possible framework for the intracellular regulation of the P2X7 receptor.


Asunto(s)
Calmodulina , Receptores Purinérgicos P2X7 , Calmodulina/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Unión Proteica , Sitios de Unión , Dominios Proteicos
4.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328585

RESUMEN

cADPR is a second messenger that releases Ca2+ from intracellular stores via the ryanodine receptor. Over more than 15 years, it has been controversially discussed whether cADPR also contributes to the activation of the nucleotide-gated cation channel TRPM2. While some groups have observed activation of TRPM2 by cADPR alone or in synergy with ADPR, sometimes only at 37 °C, others have argued that this is due to the contamination of cADPR by ADPR. The identification of a novel nucleotide-binding site in the N-terminus of TRPM2 that binds ADPR in a horseshoe-like conformation resembling cADPR as well as the cADPR antagonist 8-Br-cADPR, and another report that demonstrates activation of TRPM2 by binding of cADPR to the NUDT9H domain raised the question again and led us to revisit the topic. Here we show that (i) the N-terminal MHR1/2 domain and the C-terminal NUDT9H domain are required for activation of human TRPM2 by ADPR and 2'-deoxy-ADPR (2dADPR), (ii) that pure cADPR does not activate TRPM2 under a variety of conditions that have previously been shown to result in channel activation, (iii) the cADPR antagonist 8-Br-cADPR also inhibits activation of TRPM2 by ADPR, and (iv) cADPR does not bind to the MHR1/2 domain of TRPM2 while ADPR does.


Asunto(s)
ADP-Ribosa Cíclica , Canales Catiónicos TRPM , Sitios de Unión , Calcio/metabolismo , Señalización del Calcio , ADP-Ribosa Cíclica/metabolismo , Humanos , Canales Catiónicos TRPM/metabolismo
5.
Proteins ; 89(12): 1633-1646, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34449113

RESUMEN

Critical assessment of structure prediction (CASP) conducts community experiments to determine the state of the art in computing protein structure from amino acid sequence. The process relies on the experimental community providing information about not yet public or about to be solved structures, for use as targets. For some targets, the experimental structure is not solved in time for use in CASP. Calculated structure accuracy improved dramatically in this round, implying that models should now be much more useful for resolving many sorts of experimental difficulties. To test this, selected models for seven unsolved targets were provided to the experimental groups. These models were from the AlphaFold2 group, who overall submitted the most accurate predictions in CASP14. Four targets were solved with the aid of the models, and, additionally, the structure of an already solved target was improved. An a posteriori analysis showed that, in some cases, models from other groups would also be effective. This paper provides accounts of the successful application of models to structure determination, including molecular replacement for X-ray crystallography, backbone tracing and sequence positioning in a cryo-electron microscopy structure, and correction of local features. The results suggest that, in future, there will be greatly increased synergy between computational and experimental approaches to structure determination.


Asunto(s)
Biología Computacional/métodos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Proteínas/química , Conformación Proteica , Programas Informáticos
6.
Hum Mutat ; 41(1): 133-139, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31579991

RESUMEN

Mucolipidosis (ML) II and III alpha/beta are inherited lysosomal storage disorders caused by mutations in GNPTAB encoding the α/ß-precursor of GlcNAc-1-phosphotransferase. This enzyme catalyzes the initial step in the modification of more than 70 lysosomal enzymes with mannose 6-phosphate residues to ensure their intracellular targeting to lysosomes. The so-called stealth domains in the α- and ß-subunit of GlcNAc-1-phosphotransferase were thought to be involved in substrate recognition and/or catalysis. Here, we performed in silico alignment analysis of stealth domain-containing phosphotransferases and showed that the amino acid residues Glu389 , Asp408 , His956 , and Arg986 are highly conserved between different phosphotransferases. Interestingly, mutations in these residues were identified in patients with MLII and MLIII alpha/beta. To further support the in silico findings, we also provide experimental data demonstrating that these four amino acid residues are strictly required for GlcNAc-1-phosphotransferase activity and thus may be directly involved in the enzymatic catalysis.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Predisposición Genética a la Enfermedad , Mucolipidosis/diagnóstico , Mucolipidosis/genética , Mutación Missense , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Alelos , Secuencia de Aminoácidos , Catálisis , Técnica del Anticuerpo Fluorescente , Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Fenotipo , Especificidad por Sustrato , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
7.
Hum Mol Genet ; 26(3): 538-551, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062662

RESUMEN

The neurometabolic disorder glutaric aciduria type 1 (GA1) is caused by mutations in the GCDH gene encoding the mitochondrial matrix protein glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes. Twenty percent of all pathogenic mutations affect single amino acid residues on the surface of GCDH resulting in a severe clinical phenotype. We report here on heterologous expression studies of 18 missense mutations identified in GA1 patients affecting surface amino acids. Western blot and pulse chase experiments revealed that the stability of half of the GCDH mutants was significantly reduced. In silico analyses showed that none of the mutations impaired the 3D structure of GCDH. Immunofluorescence co-localisation studies in HeLa cells demonstrated that all GCDH mutants were correctly translocated into mitochondria. Surprisingly, the expression of p.Arg88Cys GCDH as well as further substitutions by alanine, lysine, or methionine but not histidine or leucine resulted in the disruption of mitochondrial architecture forming longitudinal structures composed of stacks of cristae and partial loss of the outer mitochondrial membrane. The expression of mitochondrial fusion or fission proteins was not affected in these cells. Bioluminescence resonance energy transfer analyses revealed that all GCDH mutants exhibit an increased binding affinity to electron transfer flavoprotein beta, whereas only p.Tyr155His GCDH showed a reduced interaction with dihydrolipoamide succinyl transferase. Our data underscore the impact of GCDH protein interactions mediated by amino acid residues on the surface of GCDH required for proper enzymatic activity.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Estabilidad de Enzimas/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Mitocondrias/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Sustitución de Aminoácidos/genética , Encefalopatías Metabólicas/patología , Regulación Enzimológica de la Expresión Génica/genética , Glutaril-CoA Deshidrogenasa/química , Células HeLa , Humanos , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Mutación Missense/genética , Conformación Proteica , Multimerización de Proteína/genética
8.
Biol Chem ; 400(11): 1509-1518, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31141477

RESUMEN

Membrane protein research suffers from the drawback that detergents, which are commonly used to solubilize integral membrane proteins (IMPs), often lead to protein instability and reduced activity. Recently, lipid nanodiscs (NDs) and saposin-lipoprotein particles (Salipro) have emerged as alternative carrier systems that keep membrane proteins in a native-like lipidic solution environment and are suitable for biophysical and structural studies. Here, we systematically compare nanodiscs and Salipros with respect to long-term stability as well as activity and stability of the incorporated membrane protein using the ABC transporter MsbA as model system. Our results show that both systems are suitable for activity measurements as well as structural studies in solution. Based on our results we suggest screening of different lipids with respect to activity and stability of the incorporated IMP before performing structural studies.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Escherichia coli/química , Lipoproteínas/química , Nanoestructuras/química , Saposinas/química , Estructura Molecular , Tamaño de la Partícula
9.
Nature ; 491(7424): 468-72, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23086147

RESUMEN

Calcium ions (Ca(2+)) have an important role as secondary messengers in numerous signal transduction processes, and cells invest much energy in controlling and maintaining a steep gradient between intracellular (∼0.1-micromolar) and extracellular (∼2-millimolar) Ca(2+) concentrations. Calmodulin-stimulated calcium pumps, which include the plasma-membrane Ca(2+)-ATPases (PMCAs), are key regulators of intracellular Ca(2+) in eukaryotes. They contain a unique amino- or carboxy-terminal regulatory domain responsible for autoinhibition, and binding of calcium-loaded calmodulin to this domain releases autoinhibition and activates the pump. However, the structural basis for the activation mechanism is unknown and a key remaining question is how calmodulin-mediated PMCA regulation can cover both basal Ca(2+) levels in the nanomolar range as well as micromolar-range Ca(2+) transients generated by cell stimulation. Here we present an integrated study combining the determination of the high-resolution crystal structure of a PMCA regulatory-domain/calmodulin complex with in vivo characterization and biochemical, biophysical and bioinformatics data that provide mechanistic insights into a two-step PMCA activation mechanism mediated by calcium-loaded calmodulin. The structure shows the entire PMCA regulatory domain and reveals an unexpected 2:1 stoichiometry with two calcium-loaded calmodulin molecules binding to different sites on a long helix. A multifaceted characterization of the role of both sites leads to a general structural model for calmodulin-mediated regulation of PMCAs that allows stringent, highly responsive control of intracellular calcium in eukaryotes, making it possible to maintain a stable, basal level at a threshold Ca(2+) concentration, where steep activation occurs.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Calmodulina/química , Eucariontes/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Sitios de Unión , ATPasas Transportadoras de Calcio/genética , Calmodulina/metabolismo , Activación Enzimática , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
10.
Chembiochem ; 18(17): 1735-1742, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28603929

RESUMEN

A crucial bottleneck in membrane protein structural biology is the difficulty in identifying a detergent that can maintain the stability and functionality of integral membrane proteins (IMPs). Detergents are poor membrane mimics, and their common use in membrane protein crystallography may be one reason for the challenges in obtaining high-resolution crystal structures of many IMP families. Lipid-like peptides (LLPs) have detergent-like properties and have been proposed as alternatives for the solubilization of G protein-coupled receptors and other membrane proteins. Here, we systematically analyzed the stabilizing effect of LLPs on integral membrane proteins of different families. We found that LLPs could significantly stabilize detergent-solubilized IMPs in vitro. This stabilizing effect depended on the chemical nature of the LLP and the intrinsic stability of a particular IMP in the detergent. Our results suggest that screening a subset of LLPs is sufficient to stabilize a particular IMP, which can have a substantial impact on the crystallization and quality of the crystal.


Asunto(s)
Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Cristalización , Detergentes/química , Fluorometría , Lípidos/química , Proteínas de la Membrana/química , Péptidos/química , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Temperatura
11.
Trends Biochem Sci ; 35(12): 653-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20542436

RESUMEN

Na(+),K(+)-ATPase (NKA) has a fundamental role in ion transport across the plasma membrane of animal cells and uses approximately 50% of brain energy consumption. Recent work has uncovered additional roles for NKA in signal transduction. How might such different functions of the sodium-potassium pump be connected and regulated? We envision an integrated model of ion pumping and signaling, considering in particular the recently discovered regulation of the sodium-potassium pump by agrin, a protein that is cleaved specifically by neurotrypsin at the synapse. Based on the recently solved structure of NKA and sequence analysis, we propose a molecular model for the agrin-NKA interaction, in which agrin displaces the NKA ß-subunit and exploits the ouabain-binding pocket.


Asunto(s)
Agrina/metabolismo , Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Agrina/química , Animales , Modelos Moleculares , ATPasa Intercambiadora de Sodio-Potasio/química
12.
Cell Mol Life Sci ; 70(2): 205-22, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22695678

RESUMEN

The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.


Asunto(s)
Membrana Celular/metabolismo , Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Animales , Transporte Biológico Activo , Humanos , Transporte Iónico , Complejos Multiproteicos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio/química
13.
Front Immunol ; 15: 1294357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318185

RESUMEN

TRPM2 is a Ca2+ permeable, non-selective cation channel in the plasma membrane that is involved in the innate immune response regulating, for example, chemotaxis in neutrophils and cytokine secretion in monocytes and macrophages. The intracellular adenine nucleotides ADP-ribose (ADPR) and 2'-deoxy-ADPR (2dADPR) activate the channel, in combination with their co-agonist Ca2+. Interestingly, activation of human TRPM2 (hsTRPM2) by 2dADPR is much more effective than activation by ADPR. However, the underlying mechanism of the nucleotides' differential effect on the channel is not yet fully understood. In this study, we performed whole-cell patch clamp experiments with HEK293 cells heterologously expressing hsTRPM2. We show that 2dADPR has an approx. 4-fold higher Ca2+ sensitivity than ADPR (EC50 = 190 and 690 nM). This allows 2dADPR to activate the channel at lower and thus physiological intracellular Ca2+ concentrations. Kinetic analysis of our data reveals that activation by 2dADPR is faster than activation by ADPR. Mutation in a calmodulin binding N-terminal IQ-like motif in hsTRPM2 completely abrogated channel activation by both agonists. However, mutation of a single amino acid residue (W1355A) in the C-terminus of hsTRPM2, at a site of extensive inter-domain interaction, resulted in slower activation by 2dADPR and neutralized the difference in rate of activation between the two agonists. Taken together, we propose a mechanism by which 2dADPR induces higher hsTRPM2 currents than ADPR by means of faster channel activation. The finding that 2dADPR has a higher Ca2+ sensitivity than ADPR may indicate that 2dADPR rather than ADPR activates hsTRPM2 in physiological contexts such as the innate immune response.


Asunto(s)
Adenosina Difosfato Ribosa , Canales Catiónicos TRPM , Humanos , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/farmacología , Señalización del Calcio , Células HEK293 , Cinética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
14.
Bone ; 177: 116927, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797712

RESUMEN

Missense variants in the MBTPS2 gene, located on the X chromosome, have been associated with an X-linked recessive form of osteogenesis imperfecta (X-OI), an inherited bone dysplasia characterized by multiple and recurrent bone fractures, short stature, and various skeletal deformities in affected individuals. The role of site-2 protease, encoded by MBTPS2, and the molecular pathomechanism underlying the disease are to date elusive. This study is the first to report on the generation of two Mbtps2 mouse models, a knock-in mouse carrying one of the disease-causative MBTPS2 variants (N455S) and a Mbtps2 knock-out (ko) mouse. Because both loss-of-function variants lead to embryonic lethality in hemizygous male mutant mice, we performed a comprehensive skeletal analysis of heterozygous Mbtps2+/N455S and Mbtps2+/ko female mice. Both models displayed osteochondral abnormalities such as thinned subchondral bone, altered subchondral osteocyte interconnectivity as well as thickened articular cartilage with chondrocyte clustering, altogether resembling an early osteoarthritis (OA) phenotype. However, distant from the joints, no alterations in the bone mass and turnover could be detected in either of the mutant mice. Based on our findings we conclude that MBTPS2 haploinsufficiency results in early OA-like alterations in the articular cartilage and underlying subchondral bone, which likely precede the development of typical OI phenotype in bone. Our study provides first evidence for a potential role of site-2 protease for maintaining homeostasis of both bone and cartilage.


Asunto(s)
Cartílago Articular , Osteoartritis , Osteogénesis Imperfecta , Ratones , Masculino , Femenino , Animales , Osteogénesis Imperfecta/genética , Osteocitos , Huesos , Péptido Hidrolasas
15.
Methods Enzymol ; 677: 251-262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36410951

RESUMEN

Protein function is highly dependent on conformational changes and association or dissociation into numerous oligomeric states. Stopped-flow approaches are suitable for probing transient kinetics in proteins, and combining this approach with small-angle X-ray scattering offers an excellent probe into the structural kinetics of protein function. In this chapter we describe in detail the methodological aspects of our recent investigation of ATP-driven dimerization of nucleotide-binding domains from the bacterial transporter MsbA using stopped-flow small-angle X-ray scattering experiments. Despite extensive studies into the structure and function of MsbA, the structural-temporal insights into the conformational rearrangements and transient intermediates along the pathway in this transporter are missing. In our stopped-flow experiments we observe the rapid formation of a transient protein dimer and subsequent dimer decay over hundreds of seconds. Thus, this approach can be used to detect kinetic parameters associated with conformational changes over a wide range of time-scales for soluble and membrane proteins.


Asunto(s)
Proteínas de Transporte de Membrana , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Ligandos , Difracción de Rayos X
16.
Methods Enzymol ; 677: 417-432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36410958

RESUMEN

Structural studies of integral membrane proteins (IMPs) are challenging as many of them require a lipid environment for full activity and stability. Reconstitution of IMPs into carrier systems such as nanodiscs or Salipro that mimic the native lipidic environment allow structural studies of membrane proteins in solution. The difficulty with this approach when applied to scattering techniques is the contribution of the carrier system to the scattering intensity and the subsequent challenging data analysis. Recently, so-called stealth carrier systems have been developed and applied to small-angle neutron scattering (SANS) studies of integral membrane proteins that become invisible to neutrons due to specific deuteration and solvent contrast-variation. In this chapter, we describe in detail how the well-studied ATP-binding cassette (ABC) transporter protein MsbA can be reconstituted into stealth nanodiscs and subsequently be studied by SANS. This approach allows for a direct observation of the scattering signal from MsbA without the contribution of the surrounding carrier system and enables detection of different conformational states. The protocols can also be adapted to other stealth carrier systems (such as stealth Salipro).


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de la Membrana , Proteínas de la Membrana/química , Dispersión del Ángulo Pequeño , Transportadoras de Casetes de Unión a ATP/metabolismo , Neutrones
17.
J Phys Chem B ; 126(2): 368-375, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34990136

RESUMEN

We genetically incorporated the unnatural amino acid p-azido-phenylalanine (AzF) into the ubiquitous Ca2+ sensor protein calmodulin (CaM) in complex with different peptides to explore the response of the azido stretching line shape to varying binding motifs with femtosecond infrared spectroscopy. The dynamic response of the azido stretching mode varies in different CaM-peptide complexes. We model these dynamics as coherent excitations of Fermi resonances and extract a lifetime of the azido stretching vibration of about 1 ps. The resulting model parameters are commensurate with the linear infrared absorption lineshapes which suggests that the conformation-sensitive vibrational lineshape could be composed of Fermi resonances that differ between the protein-peptide complexes.


Asunto(s)
Calmodulina , Fenilalanina , Calmodulina/química , Conformación Molecular , Fenilalanina/química , Dinámica Poblacional , Espectrofotometría Infrarroja
18.
Protein Sci ; 31(6): e4320, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35634784

RESUMEN

Transient receptor potential melastatin 2 (TRPM2) is a Ca2+ -permeable, nonselective cation channel involved in diverse physiological processes such as immune response, apoptosis, and body temperature sensing. TRPM2 is activated by ADP-ribose (ADPR) and 2'-deoxy-ADPR in a Ca2+ -dependent manner. While two distinct binding sites exist for ADPR that exert different functions dependent on the species, the involvement of either binding site regarding the superagonistic effect of 2'-deoxy-ADPR is not clear yet. Here, we report the crystal structure of the MHR1/2 domain of TRPM2 from zebrafish (Danio rerio), and show that both ligands bind to this domain and activate the channel. We identified a so far unrecognized Zn2+ -binding domain that was not resolved in previous cryo-EM structures and that is conserved in most TRPM channels. In combination with patch clamp experiments we comprehensively characterize the effect of the Zn2+ -binding domain on TRPM2 activation. Our results provide insight into a conserved motif essential for structural integrity and channel activity.


Asunto(s)
Canales Catiónicos TRPM , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Animales , Calcio/metabolismo , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Pez Cebra/metabolismo , Zinc/metabolismo
19.
FEBS J ; 289(10): 2959-2970, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34921499

RESUMEN

The ATP-binding cassette transporter MsbA is a lipid flippase, translocating lipid A, glycolipids, and lipopolysaccharides from the inner to the outer leaflet of the inner membrane of Gram-negative bacteria. It has been used as a model system for time-resolved structural studies as several MsbA structures in different states and reconstitution systems (detergent/nanodiscs/peptidiscs) are available. However, due to the limited resolution of the available structures, detailed structural information on the bound nucleotides has remained elusive. Here, we have reconstituted MsbA in saposin A-lipoprotein nanoparticles (Salipro) and determined the structure of ADP-vanadate-bound MsbA by single-particle cryo-electron microscopy to 3.5 Å resolution. This procedure has resulted in significantly improved resolution and enabled us to model all side chains and visualise detailed ADP-vanadate interactions in the nucleotide-binding domains. The approach may be applicable to other dynamic membrane proteins.


Asunto(s)
Nanopartículas , Saposinas , Adenosina Difosfato , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón/métodos , Liposomas , Nanopartículas/química , Saposinas/química , Vanadatos/química
20.
Proc Natl Acad Sci U S A ; 105(15): 5762-7, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18391200

RESUMEN

Proteins with intrinsically disordered domains are implicated in a vast range of biological processes, especially in cell signaling and regulation. Having solved the quaternary structure of the folded domains in the tumor suppressor p53 by a multidisciplinary approach, we have now determined the average ensemble structure of the intrinsically disordered N-terminal transactivation domain (TAD) by using residual dipolar couplings (RDCs) from NMR spectroscopy and small-angle x-ray scattering (SAXS). Remarkably, not only were we able to measure RDCs of the isolated TAD, but we were also able to do so for the TAD in both the full-length tetrameric p53 protein and in its complex with a specific DNA response element. We determined the orientation of the TAD ensemble relative to the core domain, found that the TAD was stiffer in the proline-rich region (residues 64-92), which has a tendency to adopt a polyproline II (PPII) structure, and projected the TAD away from the core. We located the TAD in SAXS experiments on a complex between tetrameric p53 and four Taz2 domains that bind tightly to the TAD (residues 1-57) and acted as "reporters." The p53-Taz2 complex was an extended cross-shaped structure. The quality of the SAXS data enabled us to model the disordered termini and the folded domains in the complex with DNA. The core domains enveloped the response element in the center of the molecule, with the Taz2-bound TADs projecting outward from the core.


Asunto(s)
Activación Transcripcional , Proteína p53 Supresora de Tumor/química , Secuencias de Aminoácidos , ADN/química , Humanos , Mutación , Fragmentos de Péptidos , Unión Proteica , Estructura Terciaria de Proteína , Elementos de Respuesta , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA