Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119140, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599983

RESUMEN

Translation of an mRNA represents a critical step during the expression of protein-coding genes. As mechanisms governing post-transcriptional regulation of gene expression are progressively unveiled, it is becoming apparent that transcriptional programs are not fully reflected in the proteome. Herein, we highlight a previously underappreciated post-transcriptional mode of regulation of gene expression termed translational buffering. In principle, translational buffering opposes the impact of alterations in mRNA levels on the proteome. We further describe three types of translational buffering: compensation, which maintains protein levels e.g. across species or individuals; equilibration, which retains pathway stoichiometry; and offsetting, which acts as a reversible mechanism that maintains the levels of selected subsets of proteins constant despite genetic alteration and/or stress-induced changes in corresponding mRNA levels. While mechanisms underlying compensation and equilibration have been reviewed elsewhere, the principal focus of this review is on the less-well understood mechanism of translational offsetting. Finally, we discuss potential roles of translational buffering in homeostasis and disease.


Asunto(s)
Homeostasis , Biosíntesis de Proteínas , Animales , Uso de Codones , Humanos , Procesamiento Postranscripcional del ARN , Proteínas Ribosómicas/metabolismo
2.
iScience ; 22: 1-15, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31739170

RESUMEN

Although primary prostate cancer is largely curable, progression to metastatic disease is associated with very poor prognosis. E6AP is an E3 ubiquitin ligase and a transcriptional co-factor involved in normal prostate development. E6AP drives prostate cancer when overexpressed. Our study exposed a role for E6AP in the promotion of metastatic phenotype in prostate cells. We revealed that elevated levels of E6AP in primary prostate cancer correlate with regional metastasis and demonstrated that E6AP promotes acquisition of mesenchymal features, migration potential, and ability for anchorage-independent growth. We identified the metastasis suppressor NDRG1 as a target of E6AP and showed it is key in E6AP induction of mesenchymal phenotype. We showed that treatment of prostate cancer cells with pharmacological agents upregulated NDRG1 expression suppressed E6AP-induced cell migration. We propose that the E6AP-NDRG1 axis is an attractive therapeutic target for the treatment of E6AP-driven metastatic prostate cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA