Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446415

RESUMEN

This paper presents methods and approaches that can be used for production of Sm-Co-Fe-Cu-Zr permanent magnets with working temperatures of up to 550 °C. It is shown that the content of Sm, Cu, and Fe significantly affects the coercivity (Hc) value at high operating temperatures. A decrease in the content of Fe, which replaces Co, and an increase in the content of Sm in Sm-Co-Fe-Cu-Zr alloys lead to a decrease in Hc value at room temperature, but significantly increase Hc at temperatures of about 500 °C. Increasing the Cu concentration enhances the Hc values at all operating temperatures. From analysis of the dependence of temperature coefficients of the coercivity on the concentrations of various constituent elements in this alloy, the optimum chemical composition that qualifies for high-temperature permanent magnet (HTPM) application were determined. 3D atom probe tomography analysis shows that the nanostructure of the HTPM is characterized by the formation of Sm2(Co,Fe)17 (2:17) cells relatively smaller in size along with the slightly thickened Sm(Co,Cu)5 (1:5) boundary phase compared to those of the high-energy permanent magnet compositions. An inhomogeneous distribution of Cu was also noticed in the 1:5 phase. At the boundary between 1:5 and 2:17 phases, an interface with lowered anisotropy constants has developed, which could be the reason for the observed high coercivity values.

2.
J Phys Condens Matter ; 27(14): 146002, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25786610

RESUMEN

The magnetic and magnetothermal properties of holmium single crystal have been investigated from 4.2 to 300 K in magnetic fields up to 100 kOe using magnetization and heat capacity data measured along the easy magnetization direction, which is the crystallographic b-axis, i.e. [112¯0] direction. The magnetic phase diagram of Ho has been refined by examining data measured using a high purity single crystal.

3.
J Phys Condens Matter ; 26(6): 066001, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24451321

RESUMEN

The magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb.


Asunto(s)
Fenómenos Magnéticos , Temperatura , Terbio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA