Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993342

RESUMEN

In developing tissues, knowing the localization and interactors of proteins of interest is key to understanding their function. Here, we describe the Breasi-CRISPR approach (Brain Easi-CRISPR), combining Easi-CRISPR with in utero electroporation to tag endogenous proteins within embryonic mouse brains. Breasi-CRISPR enables knock-in of both short and long epitope tag sequences with high efficiency. We visualized epitope-tagged proteins with varied expression levels, such as ACTB, LMNB1, EMD, FMRP, NOTCH1 and RPL22. Detection was possible by immunohistochemistry as soon as 1 day after electroporation and we observed efficient gene editing in up to 50% of electroporated cells. Moreover, tagged proteins could be detected by immunoblotting in lysates from individual cortices. Next, we demonstrated that Breasi-CRISPR enables the tagging of proteins with fluorophores, allowing visualization of endogenous proteins by live imaging in organotypic brain slices. Finally, we used Breasi-CRISPR to perform co-immunoprecipitation mass-spectrometry analyses of the autism-related protein FMRP to discover its interactome in the embryonic cortex. Together, these data demonstrate that Breasi-CRISPR is a powerful tool with diverse applications that will propel the understanding of protein function in neurodevelopment.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Electroporación/métodos , Epítopos , Edición Génica/métodos , Ratones
2.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511274

RESUMEN

Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered non-erythropoietic derivative of EPO, does not alter hematocrit and maintains neurotrophic and behavioral effects comparable to EPO. Our study aimed to investigate the role of CEPO in cerebral hemodynamics. Magnetic resonance imaging (MRI) analysis indicated increased blood perfusion in the hippocampal and striatal region without altering tight junction integrity. In vitro and in vivo analyses indicated that hippocampal neurotransmission was unaltered and increased cerebral perfusion was likely due to EDRF, CGRP, and NOS-mediated vasodilation. In vitro analysis using human umbilical vein endothelial cells (HUVEC) and hippocampal vascular gene expression analysis showed CEPO to be a non-angiogenic agent which regulates the MEOX2 gene expression. The results from our study demonstrate a novel role of CEPO in modulating cerebral vasodilation and blood perfusion.


Asunto(s)
Células Endoteliales , Eritropoyetina , Humanos , Eritropoyetina/genética , Eritropoyetina/farmacología , Epoetina alfa , Regulación de la Expresión Génica , Perfusión
3.
Proc Natl Acad Sci U S A ; 113(38): 10536-41, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601655

RESUMEN

Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.


Asunto(s)
Complejos Multiproteicos/genética , Proteínas SNARE/genética , Transmisión Sináptica/genética , Proteína 2 de Membrana Asociada a Vesículas/genética , Animales , Fenómenos Biofísicos , Fusión de Membrana/genética , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ratas , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(5): 1849-54, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449908

RESUMEN

Two classes of proteins that bind to each other and to Golgi membranes have been implicated in the adhesion of Golgi cisternae to each other to form their characteristic stacks: Golgi reassembly and stacking proteins 55 and 65 (GRASP55 and GRASP65) and Golgin of 45 kDa and Golgi matrix protein of 130 kDa. We report here that efficient stacking occurs in the absence of GRASP65/55 when either Golgin is overexpressed, as judged by quantitative electron microscopy. The Golgi stacks in these GRASP-deficient HeLa cells were normal both in morphology and in anterograde cargo transport. This suggests the simple hypothesis that the total amount of adhesive energy gluing cisternae dictates Golgi cisternal stacking, irrespective of which molecules mediate the adhesive process. In support of this hypothesis, we show that adding artificial adhesive energy between cisternae and mitochondria by dimerizing rapamycin-binding domain and FK506-binding protein domains that are attached to cisternal adhesive proteins allows mitochondria to invade the stack and even replace Golgi cisternae within a few hours. These results indicate that although Golgi stacking is a highly complicated process involving a large number of adhesive and regulatory proteins, the overriding principle of a Golgi stack assembly is likely to be quite simple. From this simplified perspective, we propose a model, based on cisternal adhesion and cisternal maturation as the two core principles, illustrating how the most ancient form of Golgi stacking might have occurred using only weak cisternal adhesive processes because of the differential between the rate of influx and outflux of membrane transport through the Golgi.


Asunto(s)
Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Membranas Intracelulares/metabolismo , Adhesividad , Autoantígenos/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Biológicos , Transfección
5.
BMC Struct Biol ; 16: 12, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27534744

RESUMEN

BACKGROUND: The Plasmodium falciparum M18 Aspartyl Aminopeptidase (PfM18AAP) is only aspartyl aminopeptidase which is found in the genome of P. falciparum and is essential for its survival. The PfM18AAP enzyme performs various functions in the parasite and the erythrocytic host such as hemoglobin digestion, erythrocyte invasion, parasite growth and parasite escape from the host cell. It is a valid target to develop antimalarial drugs. In the present work, we employed 3D QSAR modeling, pharmacophore modeling, and molecular docking to identify novel potent inhibitors that bind with M18AAP of P. falciparum. RESULTS: The PLSR QSAR model showed highest value for correlation coefficient r(2) (88 %) and predictive correlation coefficient (pred_r2) =0.6101 for external test set among all QSAR models. The pharmacophore modeling identified DHRR (one hydrogen donor, one hydrophobic group, and two aromatic rings) as an essential feature of PfM18AAP inhibitors. The combined approach of 3D QSAR, pharmacophore, and structure-based molecular docking yielded 10 novel PfM18AAP inhibitors from ChEMBL antimalarial library, 2 novel inhibitors from each derivative of quinine, chloroquine, 8-aminoquinoline and 10 novel inhibitors from WHO antimalarial drugs. Additionally, high throughput virtual screening identified top 10 compounds as antimalarial leads showing G-scores -12.50 to -10.45 (in kcal/mol), compared with control compounds(G-scores -7.80 to -4.70) which are known antimalarial M18AAP inhibitors (AID743024). This result indicates these novel compounds have the best binding affinity for PfM18AAP. CONCLUSION: The 3D QSAR models of PfM18AAP inhibitors provided useful information about the structural characteristics of inhibitors which are contributors of the inhibitory potency. Interestingly, In this studies, we extrapolate that the derivatives of quinine, chloroquine, and 8-aminoquinoline, for which there is no specific target has been identified till date, might show the antimalarial effect by interacting with PfM18AAP.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Glutamil Aminopeptidasa/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Aminoquinolinas/química , Aminoquinolinas/farmacología , Cloroquina/análogos & derivados , Cloroquina/farmacología , Diseño de Fármacos , Glutamil Aminopeptidasa/metabolismo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa
6.
Stat Med ; 33(11): 1867-76, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24353112

RESUMEN

The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions.


Asunto(s)
Análisis por Conglomerados , Distribuciones Estadísticas , Análisis de Supervivencia , Simulación por Computador , Humanos , India/epidemiología , Método de Montecarlo , Tuberculosis/epidemiología
7.
Commun Biol ; 7(1): 532, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710927

RESUMEN

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Asunto(s)
Respuesta al Choque Térmico , Metabolismo de los Lípidos , Sumoilación , Ubiquitinas , Humanos , Metabolismo de los Lípidos/genética , Respuesta al Choque Térmico/genética , Regulación de la Expresión Génica , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Células HeLa , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Células HEK293 , Transcripción Genética , beta Carioferinas/metabolismo , beta Carioferinas/genética
8.
Cureus ; 16(3): e56071, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618331

RESUMEN

Objective In light of several advancements and considerations in endodontic dentistry, there still remains a need to comprehensively evaluate the outcome disparities between repairing and replacing broken dental restorations. This study aims to compare the effectiveness of repairing dental restorations versus replacing them, focusing on how each method affects the structural strength and longevity of the restorations. Methods The study included 60 freshly removed human maxillary premolars. Initial processing involved rigorous washing, descaling, and polishing of the teeth. To ensure preservation, the specimens were stored in sterile, distilled water. To occlude the root canals, a self-hardening composite resin was used, and the roots were coated with two coats of clear nail polish to prevent moisture penetration. A 245 carbide bur attached to a high-speed dental handpiece with air and water spray cooling produced standardized Class II cavities on the occluso-proximal surfaces. Each cavity had a buccolingual breadth of 2 mm, an occluso-cervical length of 4 mm, and a gingival boundary that was 1 mm coronal to the cement-enamel junction. Following this preparation, the teeth were randomly separated into three groups (Group A, Group B, and Group C), each containing 20 teeth. Results Our analysis showed that teeth with entirely replaced restorations had a higher average fracture resistance than those with repaired restorations. However, the difference in fracture resistance between the repair and replacement groups for each type of material was not statistically significant. Conclusion Based on the findings, repairing a dental restoration can be a conservative and less invasive alternative to a full replacement without a significant compromise in the restoration's ability to withstand fracture. Therefore, dental professionals might consider full restoration as a viable option, taking into account the need to preserve dental tissue as well as the restoration's durability and structural integrity.

9.
J Clin Pharmacol ; 64(1): 67-79, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37691236

RESUMEN

Ritlecitinib is a small molecule in clinical development that covalently and irreversibly inhibits Janus kinase 3 (JAK3) and the TEC family of kinases (BTK, BMX, ITK, TXK, and TEC). This phase 1, open-label, parallel-group study assessed target occupancy and functional effects of ritlecitinib on JAK3 and TEC family kinases in healthy participants aged 18-60 years who received 50 or 200 mg single doses of ritlecitinib on day 1. Blood samples to assess ritlecitinib pharmacokinetics, target occupancy, and pharmacodynamics were collected over 48 hours. Target occupancy was assessed using mass spectroscopy. Functional inhibition of JAK3-dependent signaling was measured by the inhibition of the phosphorylation of its downstream target signal transducer and activator of transcription 5 (pSTAT5), following activation by interleukin 15 (IL-15). The functional inhibition of Bruton's tyrosine kinase (BTK)-dependent signaling was measured by the reduction in the upregulation of cluster of differentiation 69 (CD69), an early marker of B-cell activation, following treatment with anti-immunoglobulin D. Eight participants received one 50 mg ritlecitinib dose and 8 participants received one 200 mg dose. Ritlecitinib plasma exposure increased in an approximately dose-proportional manner from 50 to 200 mg. The maximal median JAK3 target occupancy was 72% for 50 mg and 64% for 200 mg. Ritlecitinib 50 mg had >94% maximal target occupancy of all TEC kinases, except BMX (87%), and 200 mg had >97% for all TEC kinases. For BTK and TEC, ritlecitinib maintained high target occupancy throughout a period of 48 hours. Ritlecitinib reduced pSTAT5 levels following IL-15- and BTK-dependent signaling in a dose-dependent manner. These target occupancy and functional assays demonstrate the dual inhibition of the JAK3- and BTK-dependent pathways by ritlecitinib. Further studies are needed to understand the contribution to clinical effects of inhibiting these pathways.


Asunto(s)
Interleucina-15 , Janus Quinasa 3 , Humanos , Agammaglobulinemia Tirosina Quinasa , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Factores Inmunológicos
10.
Artículo en Inglés | MEDLINE | ID: mdl-37936032

RESUMEN

Plastic has been known as an artificial polymer whereas environmental microplastics become a global concern. Microplastics are reported to cause immunotoxicity in humans through gut deposition and entering the bloodstream. This study is a comprehensive indication of the recent research on microplastic toxicity in the gastrointestinal system. We performed bibliographic analysis using VOS viewer software and analyzed the data received on microplastics and their impact on gut health which has grown exponentially since 2016. Recent findings also support microplastic toxicity in combination with heavy metals. The smaller particle size and other factors enhanced the adsorption ability of environmental contamination such as heavy metals on microplastic which increased their bioaccumulation. Such toxic complexes of heavy metals and microplastics are a concern to natural ecosystems and environmental biologists. Few reports also demonstrated the biofilm formation on microplastic surfaces which might cause greater environmental as well as human health risks. Notably, terms of determining the microplastics in human tissues through several analytical techniques are still limited to some extent. Future research should be focused on the quantification of microplastics in human tissues, the combined effect of microplastics with other contaminants, and their effects on pre-existing diseases. This study boosts understanding of the potential impacts of microplastic and nanoplastic toxicity in the human gastrointestinal system.

11.
Cells ; 12(8)2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37190068

RESUMEN

Stem cells' self-renewal and multi-lineage differentiation are regulated by a complex network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc., are not translated into proteins but act as essential epigenetic regulators in stem cells' self-renewal and differentiation. Different signaling pathways are monitored efficiently by the differential expression of ncRNAs, which function as regulatory elements in determining the fate of stem cells. In addition, several species of ncRNAs could serve as potential molecular biomarkers in early diagnosis of bone diseases, including osteoporosis, osteoarthritis, and bone cancers, ultimately leading to the development of new therapeutic strategies. This review aims to explore the specific roles of ncRNAs and their effective molecular mechanisms in the growth and development of stem cells, and in the regulation of osteoblast and osteoclast activities. Furthermore, we focus on and explore the association of altered ncRNA expression with stem cells and bone turnover.


Asunto(s)
Enfermedades Óseas , MicroARNs , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Enfermedades Óseas/genética , Enfermedades Óseas/terapia
13.
J Immunol ; 185(1): 624-33, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20530261

RESUMEN

Mast cells exert protective effects in experimental antiglomerular basement membrane-induced glomerulonephritis (GN), yet the responsible mediators have not been identified. In this study, we investigated the role of mouse mast cell protease (mMCP)-4, the functional homolog of human chymase, using mMCP-4-deficient mice. Compared with wild type animals, mMCP-4-deficient mice exhibited lower proteinuria, blood creatinine, and blood urea nitrogen levels, indicating an aggravating role of mMCP-4. Kidney histology confirmed less severe renal damage in mMCP-4-deficient mice with reduced deposits, glomerular and interstitial cellularity, and fibrosis scores. High amounts of mMCP-4 were detected in renal capsules, but not in the whole kidney, from wild type mice. Its expression in renal capsules was markedly decreased after GN induction, suggesting that locally released enzyme by degranulated mast cells could contribute to the functional and physiopathological hallmarks of GN. Supporting a proinflammatory role, glomerular and interstitial macrophage and T cell infiltration, levels of proinflammatory TNF and MCP-1 mRNA, and the expression of the profibrotic peptide angiotensin II together with type I collagen were markedly downregulated in kidneys of mMCP-4-deficient mice. We conclude that mMCP-4 chymase, contrary to the global anti-inflammatory action of mast cells, aggravates GN by promoting kidney inflammation. These results highlight the complexity of mast cell-mediated inflammatory actions and suggest that chymase inhibition may represent a novel therapeutic target in GN.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/enzimología , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Enfermedades del Complejo Inmune/enzimología , Enfermedades del Complejo Inmune/patología , Mediadores de Inflamación/fisiología , Serina Endopeptidasas/fisiología , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Células Cultivadas , Fibrosis , Enfermedades del Complejo Inmune/inmunología , Pruebas de Función Renal , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
14.
Oxid Med Cell Longev ; 2022: 3012778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092161

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronavirus (HCoV) that has created a pandemic situation worldwide as COVID-19. This virus can invade human cells via angiotensin-converting enzyme 2 (ACE2) receptor-based mechanisms, affecting the human respiratory tract. However, several reports of neurological symptoms suggest a neuroinvasive development of coronavirus. SARS-CoV-2 can damage the brain via several routes, along with direct neural cell infection with the coronavirus. The chronic inflammatory reactions surge the brain with proinflammatory elements, damaging the neural cells, causing brain ischemia associated with other health issues. SARS-CoV-2 exhibited neuropsychiatric and neurological manifestations, including cognitive impairment, depression, dizziness, delirium, and disturbed sleep. These symptoms show nervous tissue damage that enhances the occurrence of neurodegenerative disorders and aids dementia. SARS-CoV-2 has been seen in brain necropsy and isolated from the cerebrospinal fluid of COVID-19 patients. The associated inflammatory reaction in some COVID-19 patients has increased proinflammatory cytokines, which have been investigated as a prognostic factor. Therefore, the immunogenic changes observed in Parkinson's and Alzheimer's patients include their pathogenetic role. Inflammatory events have been an important pathophysiological feature of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's. The neuroinflammation observed in AD has exacerbated the Aß burden and tau hyperphosphorylation. The resident microglia and other immune cells are responsible for the enhanced burden of Aß and subsequently mediate tau phosphorylation and ultimately disease progression. Similarly, neuroinflammation also plays a key role in the progression of PD. Several studies have demonstrated an interplay between neuroinflammation and pathogenic mechanisms of PD. The dynamic proinflammation stage guides the accumulation of α-synuclein and neurodegenerative progression. Besides, few viruses may have a role as stimulators and generate a cross-autoimmune response for α-synuclein. Hence, neurological complications in patients suffering from COVID-19 cannot be ruled out. In this review article, our primary focus is on discussing the neuroinvasive effect of the SARS-CoV-2 virus, its impact on the blood-brain barrier, and ultimately its impact on the people affected with neurodegenerative disorders such as Parkinson's and Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Enfermedad de Parkinson , Enfermedad de Alzheimer/complicaciones , COVID-19/complicaciones , Humanos , Enfermedad de Parkinson/complicaciones , Peptidil-Dipeptidasa A , SARS-CoV-2 , alfa-Sinucleína
15.
Life (Basel) ; 11(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921564

RESUMEN

In recent years, erythropoietin (EPO) has emerged as a useful neuroprotective and neurotrophic molecule that produces antidepressant and cognitive-enhancing effects in psychiatric disorders. However, EPO robustly induces erythropoiesis and elevates red blood cell counts. Chronic administration is therefore likely to increase blood viscosity and produce adverse effects in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered modification of EPO, is non-erythropoietic but retains the neurotrophic and neurotrophic activity of EPO. Blood profile analysis after EPO and CEPO administration showed that CEPO has no effect on red blood cell or platelet counts. We conducted an unbiased, quantitative, mass spectrometry-based proteomics study to comparatively investigate EPO and CEPO-induced protein profiles in neuronal phenotype PC12 cells. Bioinformatics enrichment analysis of the protein expression profiles revealed the upregulation of protein functions related to memory formation such as synaptic plasticity, long term potentiation (LTP), neurotransmitter transport, synaptic vesicle priming, and dendritic spine development. The regulated proteins, with roles in LTP and synaptic plasticity, include calcium/calmodulin-dependent protein kinase type 1 (Camk1), Synaptosomal-Associated Protein, 25 kDa (SNAP-25), Sectretogranin-1 (Chgb), Cortactin (Cttn), Elongation initiation factor 3a (Eif3a) and 60S acidic ribosomal protein P2 (Rplp2). We examined the expression of a subset of regulated proteins, Cortactin, Grb2 and Pleiotrophin, by immunofluorescence analysis in the rat brain. Grb2 was increased in the dentate gyrus by EPO and CEPO. Cortactin was induced by CEPO in the molecular layer, and pleiotrophin was increased in the vasculature by EPO. The results of our study shed light on potential mechanisms whereby EPO and CEPO produce cognitive-enhancing effects in clinical and preclinical studies.

16.
Front Neurosci ; 15: 777347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970114

RESUMEN

Autophagy is an important cellular self-digestion and recycling pathway that helps in maintaining cellular homeostasis. Dysregulation at various steps of the autophagic and endolysosomal pathway has been reported in several neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD) and is cited as a critically important feature for central nervous system (CNS) proteostasis. Recently, another molecular target, namely transcription factor EB (TFEB) has been explored globally to treat neurodegenerative disorders. This TFEB, is a key regulator of autophagy and lysosomal biogenesis pathway. Multiple research studies suggested therapeutic potential by targeting TFEB to treat human diseases involving autophagy-lysosomal dysfunction, especially neurodegenerative disorders. A common observation involving all neurodegenerative disorders is their poor efficacy in clearing and recycle toxic aggregated proteins and damaged cellular organelles due to impairment in the autophagy pathway. This dysfunction in autophagy characterized by the accumulation of toxic protein aggregates leads to a progressive loss in structural integrity/functionality of neurons and may even result in neuronal death. In recent years TFEB, a key regulator of autophagy and lysosomal biogenesis, has received considerable attention. It has emerged as a potential therapeutic target in numerous neurodegenerative disorders like AD and PD. In various neurobiology studies involving animal models, TFEB has been found to ameliorate neurotoxicity and rescue neurodegeneration. Since TFEB is a master transcriptional regulator of autophagy and lysosomal biogenesis pathway and plays a crucial role in defining autophagy activation. Studies have been done to understand the mechanisms for TFEB dysfunction, which may yield insights into how TFEB might be targeted and used for the therapeutic strategy to develop a treatment process with extensive application to neurodegenerative disorders. In this review, we explore the role of different transcription factor-based targeted therapy by some natural compounds for AD and PD with special emphasis on TFEB.

17.
Commun Biol ; 4(1): 1370, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876695

RESUMEN

Altered glycosylation plays an important role during development and is also a hallmark of increased tumorigenicity and metastatic potentials of several cancers. We report here that Tankyrase-1 (TNKS1) controls protein glycosylation by Poly-ADP-ribosylation (PARylation) of a Golgi structural protein, Golgin45, at the Golgi. TNKS1 is a Golgi-localized peripheral membrane protein that plays various roles throughout the cell, ranging from telomere maintenance to Glut4 trafficking. Our study indicates that TNKS1 localization to the Golgi apparatus is mediated by Golgin45. TNKS1-dependent control of Golgin45 protein stability influences protein glycosylation, as shown by Glycomic analysis. Further, FRAP experiments indicated that Golgin45 protein level modulates Golgi glycosyltransferease trafficking in Rab2-GTP-dependent manner. Taken together, these results suggest that TNKS1-dependent regulation of Golgin45 may provide a molecular underpinning for altered glycosylation at the Golgi during development or oncogenic transformation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glicosiltransferasas/farmacocinética , Transducción de Señal , Tanquirasas/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Transporte de Proteínas , Tanquirasas/metabolismo
18.
Future Med Chem ; 12(2): 147-159, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32031024

RESUMEN

Aim: We applied genetic programming approaches to understand the impact of descriptors on inhibitory effects of serine protease inhibitors of Mycobacterium tuberculosis (Mtb) and the discovery of new inhibitors as drug candidates. Materials & methods: The experimental dataset of serine protease inhibitors of Mtb descriptors was optimized by genetic algorithm (GA) along with the correlation-based feature selection (CFS) in order to develop predictive models using machine-learning algorithms. The best model was deployed on a library of 918 phytochemical compounds to screen potential serine protease inhibitors of Mtb. Quality and performance of the predictive models were evaluated using various standard statistical parameters. Result: The best random forest model with CFS-GA screened 126 anti-tubercular agents out of 918 phytochemical compounds. Also, genetic programing symbolic classification method is optimized descriptors and developed an equation for mathematical models. Conclusion: The use of CFS-GA with random forest-enhanced classification accuracy and predicted new serine protease inhibitors of Mtb, which can be used for better drug development against tuberculosis.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Aprendizaje Automático , Modelos Moleculares , Serina Proteasas/genética , Inhibidores de Serina Proteinasa/química
19.
Cells ; 10(1)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375033

RESUMEN

Radial neuron migration in the developing cerebral cortex is a complex journey, starting in the germinal zones and ending in the cortical plate. In mice, migratory distances can reach several hundreds of microns, or millimeters in humans. Along the migratory path, radially migrating neurons slither through cellularly dense and complex territories before they reach their final destination in the cortical plate. This task is facilitated by radial glia, the neural stem cells of the developing cortex. Indeed, radial glia have a unique bipolar morphology, enabling them to serve as guides for neuronal migration. The key guiding structure of radial glia is the basal process, which traverses the entire thickness of the developing cortex. Neurons recognize the basal process as their guide and maintain physical interactions with this structure until the end of migration. Thus, the radial glia basal process plays a key role during radial migration. In this review, we highlight the pathways enabling neuron-basal process interactions during migration, as well as the known mechanisms regulating the morphology of the radial glia basal process. Throughout, we describe how dysregulation of these interactions and of basal process morphology can have profound effects on cortical development, and therefore lead to neurodevelopmental diseases.


Asunto(s)
Corteza Cerebral , Células-Madre Neurales/citología , Neurogénesis , Neuroglía/citología , Neuronas/citología , Animales , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Humanos
20.
Sci Rep ; 10(1): 3523, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103111

RESUMEN

Visceral leishmaniasis is characterized by mixed production of Th1/2 cytokines and the disease is established by an enhanced level of Th2 cytokine. CD4+ T cells are main cell type which produces Th1/2 cytokine in the host upon Leishmania infection. However, the regulatory mechanism for Th1/2 production is not well understood. In this study, we co-cultured mice CD4+ T cells with Leishmania donovani infected and uninfected macrophage for the identification of dysregulated miRNAs in CD4+ T cells by next-generation sequencing. Here, we identified 604 and 613 known miRNAs in CD4+ T cells in control and infected samples respectively and a total of only 503 miRNAs were common in both groups. The expression analysis revealed that 112 miRNAs were up and 96 were down-regulated in infected groups, compared to uninfected control. Nineteen up-regulated and 17 down-regulated miRNAs were statistically significant (p < 0.05), which were validated by qPCR. Further, using insilco approach, we identified the gene targets of significant miRNAs on the basis of CD4+ T cell biology. Eleven up-regulated miRNAs and 9 down-regulated miRNAs were associated with the cellular immune responses and Th1/2 dichotomy upon Leishmania donovani infection. The up-regulated miRNAs targeted transcription factors that promote differentiation of CD4+ T cells towards Th1 phenotype. While down-regulated miRNAs targeted the transcription factors that facilitate differentiation of CD4+ T cells towards Th2 populations. The GO and pathway enrichment analysis also showed that the identified miRNAs target the pathway and genes related to CD4+ T cell biology which plays important role in Leishmania donovani infection.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , MicroARNs/inmunología , Células TH1/inmunología , Células Th2/inmunología , Animales , Femenino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA