RESUMEN
The increasing demand for honey purification and authentication necessitates the global utilization of advanced processing tools. Common honey processing techniques, such as chromatography, are commonly used to assess the quality and quantity of valuable honey. In this study, 15 honey samples were authenticated using HPLC and GC-MS chromatographic methods to analyze their pollen spectrum. Various monofloral honey samples were collected, including Acacia, Hypoestes, Lavandula, Tamarix, Trifolium, and Ziziphus species, based on accurate identification by apiarists in 2023 from the Kingdom of Saudi Arabia. Honey analysis revealed the extraction of pollen from 20 different honeybee floral species. Pollen identified from honey samples using advanced chromatographic tools revealed dominant vegetation resources: Ziziphus species (23%), Acacia species (25%), Tamarix species (34%), Lavandula species (26%), Hypoestes species (34%), and Trifolium species (31%). This study uses HPLC to extract phenolic compounds, revealing dominant protocatechuic acid (4.71 mg g-1), and GC-MS to analyze organic compounds in honey pollen. Specifically, 2-dodecanone was detected with a retention time of 7.34 min. The utilization of chromatographic tools in assessing honey samples for pollen identification provides a reliable and efficient method for determining their botanical origins, thereby contributing to the quality control and authentication of honey products.
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Miel , Polen , Polen/química , Miel/análisis , Cromatografía Líquida de Alta Presión/métodos , Arabia Saudita , Cromatografía de Gases y Espectrometría de Masas/métodos , Abejas , Animales , Fenoles/análisisRESUMEN
"Aquafaba", defined as legume cooking water, has a feature that can be used in various formulations as an egg and milk alternative in vegan products and improves functional properties such as foaming, emulsifying and gelling. In this study, it was aimed to investigate the usability of aquafaba in ice cream type frozen desserts containing different fruit purees (strawberry, nectarine and banana) by using its foaming capacity. Rheological properties, microstructure, overrun, melting characteristics, color measurement, dry matter, and sensory properties were investigated in different fruit-based frozen dessert samples. The brix value, density, protein content, foaming capacity (FC) and foaming stability (FS), flow behavior index, consistency coefficient, and overrun of aquafaba were determined as 7.1 ± 0°Bx, 1.022 ± 0.011 g/ml, 1.51 ± 0.41%, 85 ± 0% FC and 81 ± 0.23% FS, between 0.28 and 0.64, between 8.68 and 41.30 Pa·sn, between 116.75 and 395.93%, respectively. The dry matter content of the strawberry, nectarine, and banana-based dessert samples ranged between 17 and 48%, 20-49%, 25-50%, and the first dropping times were determined between 348 and 1538 s, 369-1689 s and 435-1985 s, respectively. As a result, cooking liquid leftover aquafaba can be used as a suitable raw material in the production of an alternative ice cream type frozen dessert for individuals with milk allergy, lactose intolerance or who prefer a vegan diet. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05885-y.
RESUMEN
In this study, we discussed covalent and non-covalent reactions between cocoa polyphenols and proteins (milk and cocoa) and the possible effects of these reactions on their bioaccessibility, considering environmental and processing conditions. Better insight into these interactions is crucial for understanding the biological effects of polyphenols, developing nutritional strategies, and improving food processing and storage. Protein-polyphenol reactions affect the properties of the final product and can lead to the formation of various precursors at various stages in the manufacturing process, such as fermentation, roasting, alkalization, and conching. Due to the complex composition of the chocolate and the various technological processes, comprehensive food profiling strategies should be applied to analyze protein-polyphenol covalent reactions covering a wide range of potential reaction products. This will help to identify potential effects on the bioaccessibility of bioactive compounds such as low-molecular-weight peptides and polyphenols. To achieve this, databases of potential reaction products and their binding sites can be generated, and the effects of various process conditions on related parameters can be investigated. This would then allow to a deeper insight into mechanisms behind protein-polyphenol interactions in chocolate, and develop strategies to optimize chocolate production for improved nutritional and sensory properties.
RESUMEN
Chocolate is a non-Newtonian substance, and such substance has different viscosities at different shear rates. Rheological evaluations have become indispensable instruments for characterizing final chocolate, forecasting product efficiency and consumer acceptance. During production, the different steps depend on a well-defined viscosity and yield stress. Furthermore, the characteristics of the final chocolate (the surface and mouth-feel) are directly related to the chocolate's viscous behavior. There is a demand for better understanding the variables affecting chocolates flow behavior. Current research realized great insight into the chocolate flow behavior in different processes such as refining, conching, and tempering. Also, the influence of formulation and particle characteristics on flow behavior of the intermediate product and the final product were discussed. Each stage of the production process: mixing, refining, conching and tempering involves modifications of macroscopic characteristics of the chocolate ingredients thus affecting the rheological attributes of the final product. Particle size distribution and ingredient composition play substantial roles in shaping its flow behavior and sensory perception. The rheological properties of chocolate provide substantial information for food scientists to improve and optimize their products and manufacturing processes. Nowadays, a thorough understanding of chocolate flow behavior is a necessity for food scientists and industry.
Asunto(s)
Cacao , Chocolate , SensaciónRESUMEN
In the new century, the most fundamental problem on a global scale is hunger and poverty reduction is one of the primary goals set by the United Nations. Currently, it is necessary to increase agricultural activities and to evaluate all agricultural products rich in nutrients without loss in order to feed the hungry population in the world. Considering that one of the most important causes of hunger in the world is inadequate access to protein content, legumes are one of the most valuable nutritional resources. In order to ensure the sustainability of legumes, alternative new ways of recycling their wastes are sought based on these multiple functions. For this purpose, recycling legume cooking waters to be used as food raw materials in various processes means reducing food waste. Recovery of nutritional components in legumes is also beneficial in vegan and vegetarian diets. In this review study, the importance of legumes in terms of global needs, their importance in terms of nutrition, the methods of obtaining the protein content of legumes, the functional properties of these proteins in the field of food processing, the gains of the evaluation and recovery of legume cooking water (Aquafaba), especially waste, were discussed.
Asunto(s)
Fabaceae , Ingredientes Alimentarios , Eliminación de Residuos , Verduras , Manipulación de Alimentos/métodosRESUMEN
BACKGROUND: Turkey skin, a byproduct of poultry processing, contains a significant amount of collagen that might be used to make non-mammal gelatin. However, gelatin production from turkey skin has not yet been investigated. The present study aimed to determine the optimum gelatin extraction conditions from turkey employing the central composite design and response surface methodologies. The independent factors such as temperature (50, 60, and 70 °C) and time (5, 7, and 9 h) were optimized for three response variables: yield, gel strength, and foam expansion (FE). RESULTS: With R2 values of 0.8576 for yield, 0.8386 for gel strength, and 0.9283 for foam expansion, linear, quadratic, and respective models were used. The yield, gel strength, and FE actual values were found to be 15.36%, 396.61 g, and 40%, respectively. The optimum extraction conditions were found to be 62.90 °C for 6.84 h. The foam stability, L, and b values were significantly impacted by temperature and extraction time (P < 0.05). CONCLUSION: The gel strength value of the gelatin extracted under optimal conditions was higher than that of commercial bovine. The findings of the present study showed that turkey skin is a suitable raw material for the manufacturing of gelatin. © 2023 Society of Chemical Industry.
Asunto(s)
Colágeno , Gelatina , Animales , Bovinos , Temperatura , AlimentosRESUMEN
BACKGROUND: The purpose of this study was to valorize green pea cooking water (aquafaba) as a foaming agent in foam-mat drying of tomato. For this aim, density of foam-mats (green pea aquafaba+tomato puree) changed between 1.06 and 0.45 g/mL depending on the aquafaba concentration. Foam-mats with 5 mm thickness were dried at 50, 60 and 70°C at 1.3 m/s air velocity. RESULTS: The results showed that the porous structure of foams with lower densities resulted in higher drying rates and moisture diffusivities. Redness (a* ) value decreased with increasing aquafaba content (p < 0.05). Total phenolic content (TPC) and antioxidant activity (CUPRAC, DPPH and FRAP) of the resulting tomato powders were also determined. Moreover, bioaccessibility of phenolics and antioxidant activities were also determined using in vitro digestion. CONCLUSIONS: All of the bioactive parameters are positively affected by foam-mat drying process. Using aquafaba as a foaming agent accelerated the drying period and improved bioactive characteristics of the powders. © 2022 Society of Chemical Industry.
Asunto(s)
Solanum lycopersicum , Polvos/química , Pisum sativum , Antioxidantes/química , Desecación/métodosRESUMEN
The use of dried grape pomace (DGP) as a bulking agent for partly substitution of sugar, milk powder and whey powder in compound chocolate (CC) was investigated. D-optimal mixture design was used to determine the effect of composition on the particle size, flow behaviour (Casson yield value and plastic viscosity), as well as total phenolic and resveratrol contents before and after in vitro digestion. The various models (linear, quadratic and cubic) which were identified as significant (P < 0.05) were used in this study. As a result, DGP was found suitable to be used in CC as a bulking agent to partially substitute sucrose, milk powder and whey powder to increase functional properties and decrease the cost of the CC. For CC with the most acceptable rheological properties and a satisfactory level of TPC and resveratrol, optimum usage levels of DGP were identified as 7.1% to 10.0%. Further studies will require to modify flow behaviours by optimizing the particle size of pomace.
RESUMEN
In the current research, the possibility of using carob powder as a substitute for cocoa powder in milk and dark compound chocolates was investigated. Five chocolate samples containing carob powder (20, 40, 60, 80 and 100%) along with control were produced and the physico-chemical analyzes were measured. Chocolate samples were assessed for sensory acceptance by a hedonic scale. The outcomes indicated that chocolate formulations with lower content of carob powder presented higher quality in terms of color parameters, mean particle size and hardness (values close to control). The addition of carob powder resulted in decreased yield stress in dark chocolates. Also dark chocolate formulations containing high levels of carob powder recorded Casson viscosity values similar to control. Moreover, the milk chocolates containing 40% carob powder illustrated no significant differences in sensory properties with control. However acceptance of the dark chocolate samples was similar to control in all attributes. The results proved that it is possible to utilize carob powder to replace cocoa powder in chocolate production in order to improve nutritional values (higher fiber and fewer calories) with agreeable sensory attributes.
RESUMEN
Fondant is a saturated sugar solution which is a paste- or cream-like heterogeneous system consisting of a solid phase (saccharose crystals), a liquid phase (saturated saccharose solution and glucose/invert sugar) and a gaseous phase. Fondant is used as a filling material and as a coating material for pastry, confectionery and chocolate products. Therefore, mechanical properties are important for both machinability and sensory properties of the fondant. In the present study, the invertase enzyme was added at different concentrations (0.1-0.5%) to investigate its effect on the textural and rheological properties of the fondant during the storage period as well as on the sugar composition. After the first week of storage, the hardness of the control sample decreased from the initial value of 221.1-69.24 g and 48.22 g for the addition of 0.1 and 0.5% enzyme. G' and Gâ³ values of the fondant decreased by treatment with invertase enzyme. The positive effect of the invertase addition to fondant was also perceived in sensory evaluation. Therefore, using invertase enzyme enabled the product having desired quality characteristics. The results of the present study highlighted that invertase enzyme can be used to soften the product improving the sensory characteristics and machinability and reducing or eliminating the crystallization of sucrose which negatively affects the quality parameters. Depending on the intended purpose of the fondant, the invertase concentration can be optimized.
RESUMEN
Oils and fats are widely used in the food formulations in order to improve nutritional and some quality characteristics of food products. Solid fats produced from oils by hydrogenization, interesterification, and fractionation processes are widely used in different foodstuffs for these aims. In recent years, consumer awareness of relation between diet and health has increased which can cause worry about solid fat including products in terms of their high saturated fatty acid and trans fatty acid contents. Therefore, different attempts have been carried out to find alternative ways to produce solid fat with low saturated fatty acid content. One of the promising ways is using oleogels, structuring oils with oleogelators. In this review, history, raw materials and production methods of the oleogels and their functions in oleogel quality were mentioned. Moreover, studies related with oleogel usage in different products were summarized and positive and negative aspects of oleogel were also mentioned. Considering the results of the related studies, it can be concluded that oleogels can be used in the formulation of bakery products, breakfast spreads, margarines, chocolates and chocolate-derived products and some of the meat products.
Asunto(s)
Ácidos Grasos/química , Grasas de la Dieta , Aditivos Alimentarios , Tecnología de Alimentos , Humanos , Compuestos Orgánicos/químicaRESUMEN
In this study, bioactive (total phenolic, antioxidant and antiradical activity) and rheological properties (steady and dynamic) of rose hip marmalade were investigated. Bioactive properties were determined in rose hip marmalade and extract. Extract had higher total phenolic content (38.5 mg GAE/g dry extract), antioxidant activity (124 mg AAE/g dry extract) and antiradical activity (49.98 %) than marmalade. Steady and dynamic rheological properties of the marmalade were determined at different temperature levels (5, 25 and 45 °C). Rose hip marmalade exhibited shear thinning behavior and Ostwald de Waele model best described flow behavior of the sample (R (2) ≥ 0.9880) at different temperature levels. Consistency index and apparent viscosity values (η 50 ) at shear rate 50 s(-1) decreased with increase in temperature level. Viscoelastic properties were determined by oscillatory shear measurements and G' (storage modulus) values were found to be higher than G'' (loss modulus) values, indicating that the rose hip marmalade had a weak gel-like structure with solid-like behavior. G', G'', G (*) (complex modulus) and η* (complex viscosity) values decreased with increase in temperature level. Modified Cox-Merz rule was satisfactorily applied to correlate apparent and complex viscosity values of the rose hip marmalade at all temperatures studied.
RESUMEN
In the present study, persimmon puree was incorporated into the ice cream mix at different concentrations (8, 16, 24, 32, and 40%) and some physicochemical (dry matter, ash, protein, pH, sugar, fat, mineral, color, and viscosity), textural (hardness, stickiness, and work of penetration), bioactive (antiradical activity and total phenolic content), and sensory properties of samples were investigated. The technique for order preference by similarity to ideal solution approach was used for the determination of optimum persimmon puree concentration based on the sensory and bioactive characteristics of final products. Increase in persimmon puree resulted in a decrease in the dry matter, ash, fat, protein contents, and viscosity of ice cream mix. Glucose, fructose, sucrose, and lactose were determined to be major sugars in the ice cream samples including persimmon and increase in persimmon puree concentration increased the fructose and glucose content. Better melting properties and textural characteristics were observed for the samples with the addition of persimmon. Magnesium, K, and Ca were determined to be major minerals in the samples and only K concentration increased with the increase in persimmon content. Bioactive properties of ice cream samples improved and, in general, acetone-water extracts showed higher bioactivity compared with ones obtained using methanol-water extracts. The technique for order preference by similarity to ideal solution approach showed that the most preferred sample was the ice cream containing 24% persimmon puree.
Asunto(s)
Fenómenos Químicos , Diospyros/química , Helados/análisis , Gusto , Comportamiento del Consumidor , Manipulación de Alimentos , Congelación , Frutas/química , Humanos , Modelos Teóricos , Fenoles/análisis , Oligoelementos/análisis , ViscosidadRESUMEN
Cig kofte, raw meatball is a traditionally produced meat product in Turkey and some other Middle East countries. It is prepared from mixtures of finely minced raw beef, bulgur, onions, various spices and tap water. Cig kofte is an uncooked product and popularly consumed with lettuce and lemon juice. In this study, yoghurt or yoghurt serum (YS) were added to the mixtures of cig kofte instead of tap water to reduce microbial risks of the raw meatball. Additionally, the effects of yoghurt and YS on some physicochemical characteristics of cig kofte were investigated. Cig kofte is generally consumed within a few hours after the preparation because of its raw nature. Also, it is generally sold under unhygienic conditions in restaurants and restaurant-like places. For this purpose, reducing of the microbial load of cig kofte is important. In the results, Escherichia coli and Listeria monocytogenes were not detected in any samples. While lactic acid bacteria count increased by addition of yoghurt and YS, the number of other microorganisms except for total aerobic mesophilic bacteria (TAMB) were decreased. The aw values and% moisture contents of the samples were varied between 0.88-0.94 and 46.25-49.72, respectively. The pH values of the samples were slightly changed during the storage of 24 h while no changes detected in the control samples during the storage. In conclusion, it can be suggested that using the yoghurt or YS instead of tap water in the preparation of cig kofte might ensure the microbial safety, increase the nutritional value and its flavour or aroma.
RESUMEN
In this study, the effects of emulsifiers such as lecithin, AMPs, Palsgaard® Oil-Binder and GMS on cocoa hazelnut spread rheology were compared under the same process conditions and formulation. Emulsifiers were added to the formulation separately at rates of 0.3%-0.4%-0.5%. Hardness values in cocoa hazelnut spread were examined at 15-day intervals until the 60th day. In addition, viscosity, rheological analyses, color, spreadability, stability tests, and sensory analyses were performed. In the production of cocoa hazelnut spread, lecithin and AMP have less hardness and lower viscosity, greater fluent consistency, better spreadability, and lower "work of shear" values compared with other emulsifiers. The emulsifier type/ratio difference did not affect the color value statistically. It was determined that the use of Oil-Binder and GMS significantly protected the stability compared with other emulsifiers. During the 60-day storage period, lecithin preserved its hardness properties better than other emulsifiers. When sensory properties were examined, the use of lecithin and AMP in cocoa hazelnut spread samples scored high in brightness, spreadability, mouthfeel, and taste parameters. As a result, lecithin comes to the fore in the use of different types and ratios of emulsifiers in cocoa hazelnut spread production technology.
Asunto(s)
Cacao , Corylus , Emulsionantes , Lecitinas , Reología , Gusto , Emulsionantes/química , Corylus/química , Cacao/química , Viscosidad , Lecitinas/química , Humanos , Manipulación de Alimentos/métodos , Color , Nueces/químicaRESUMEN
Nowadays, plant-based milks are being considered as an alternative to dairy milk due to their advantages, such as sustainability, reduced allergenicity, health benefits, and lactose-free nature. Plant-based milks are widely used in the preparation of desserts, cheese-like products, and beverages, among other applications. The aim of the present study was to formulate vegan rice puddings using various commercially available plant-based milks as a sustainable alternative to dairy milk. For this aim, central composition design was applied to optimize the key processing parameters of the Thermomix®, including temperature (80-90°C), time (6-14 min), and the amount of rice flour (6-10%, w/v), using response surface methodology (RSM). According to the RSM results, the optimum conditions were found to be 90°C for 12.5 min with 6.5% rice flour, as they exhibited minimal phase separation and similar rheological and textural properties to dairy rice pudding. Soya milk pudding had the highest hardness value among the other plant-based milk puddings, and whole fat milk, soya, oat, coconut, and cow's milks showed the best gel unity, according to the cohesiveness results. Phase separation, an important parameter for storage stability, was not observed during 7-day storage at 4°C in all groups, except for pistachio milk rice pudding. Rheological results demonstrated that all vegan pudding samples exhibited a gel-like structure with storage modulus (G') exceeding loss modulus (Gâ³) values. According to the descriptive sensory evaluation, coconut, oat, and soya milk rice puddings received the highest scores in overall acceptability. Our findings suggest that industrial plant-based rice puddings have great potential as a novel product that meets the dietary needs of the vegan community by offering acceptable flavor and texture.
RESUMEN
In this study, the effects of independent variables such as alkaline (NaOH) salt concentration (3.0-6.0 g/100 mL), alkalization temperature (60-90 °C), and time (20-40 min) on cocoa powder (low-fat) properties were investigated by using Central Composite Design. The physicochemical and color properties of samples, powder characteristics, volatile component profile, total polyphenol content (TPC), as well as antioxidant activity potentials using different methods (DPPH and ABTS) were determined. Significant models were identified for the effects on major alkalization indicators (L*, a*/b*, pH), as well as TPC and antioxidant activity potential (DPPH), which are the main motivators for the preference and consumption of cocoa products (p < 0.05). The established model was validated, and their predicted values were found to be very close to real results. It was determined that the alkali concentration had a more significant effect on dependent variables, especially on alkalization indicators, compared to the other independent variables. Furthermore, strong correlations were determined between TPC and antioxidant activity potential and color properties (L*, a*, b*, and a*/b*). Optimum concentration, temperature and time were found to be 5.3 %, 84 °C and 35.7 min for maximizing a*/b* value. The establishment of such models lead to optimizing process conditions of alkalization with minimum effort and labor force for obtaining cocoa powder with desired quality depending on the usage purpose.
Asunto(s)
Cacao , Chocolate , Chocolate/análisis , Antioxidantes/química , Cacao/química , Polifenoles/química , AlimentosRESUMEN
In this study, the effects of temperature (22, 24, 26, 28, and 30°C) and strain (0.1%, 1%, and 5%) on cocoa butter (CB) crystallization were investigated by oscillatory test, and the four-parameter Gompertz model was used to interpret the effect of parameters on pre-crystallization, nucleation, and crystal growth stages of CB. Lag time and growth rate were calculated using the Gompertz model using time-dependent storage modulus (G') data. According to the results, CB crystallization at 26°C with a 1% strain value had the highest growth rate value, the shortest lag time, and the formation of ßv polymorph type. Followingly, polymorphic types of the CB crystals were determined based on the melting points of polymorphs via the temperature ramp step, and the results obtained were correlated with a polarized light microscope. In conclusion, using a rheometer in both the observation of the pre-crystallization process and the determination of polymorph types is very important for research and development studies in the chocolate industry for process and formulation optimization. PRACTICAL APPLICATION: This study demonstrates the feasibility of a novel approach for investigating crystallization and oscillatory shear of CB using a rheometer, both for observing crystallization kinetics and determining polymorph type, accompanied by the Gompertz equation to model the crystallization kinetics. According to the results, the effect of process parameters (temperature and shear) on the crystallization behavior of CB can be observed by rheometer, which can provide a detailed perspective for chocolate manufacturers and researchers in research and development studies.
Asunto(s)
Cristalización , Reología , Temperatura , Cinética , Manipulación de Alimentos/métodos , Grasas de la Dieta/análisis , Chocolate/análisis , Cacao/químicaRESUMEN
The main objective of this study was to evaluate the effects of various formulations of fruit juice concentrates (pomegranate, grape, and sour cherry) on the pH, water activity, density, color, texture, and microstructure characteristics of candies instead of glucose syrup. The experimental points of the study were examined by a D-optimal mixture design to optimize the concentration of fruits used in the formulation and achieve excellent physicochemical characteristics. Fruit juice concentrates, either singly or in combination, were used as a complete substitute for glucose syrup in the formulation. Total fruit juice concentration used in the formulation was 54.07% and each of the fruit juice concentrations changed between 0 and 54.07% in the formulation. By combining these three fruit juices, 14 gummy candy samples were produced, depending on the Special cubic, cubic, and quadratic models that were used for the effects on the physicochemical properties (pH, water activity, density, L*, a*, b*, and chroma), and the texture profile analysis (TPA) (hardness, cohesiveness, springiness, and resilience) parameters according to independent variables. Results showed that pH, water activity, and density values of the gummy candy samples were found to be in the range of 2.22-3.08, 0.46-0.52, and 1.10-1.53 g/mL, respectively, and were significantly affected by different fruit juice concentrates (p < .05). The texture profile analysis showed that except for springiness, fruit juice concentrations significantly affected the texture profile (p < .05). The texture values, such as hardness, springiness, cohesiveness, gumminess, and resilience of the gummy candy samples, were determined as 146.1-938.8 N, 0.63-0.99, 0.75-1.19, 136.02-947.94 g, and 0.12-0.51, respectively. In addition, various fruit juice concentrates significantly affected the color parameters of gummy candies, and using pomegranate juice and sour cherry concentrates increased the +a* value of the gummy candies. Therefore, fruit juice-based gummy candies can be developed as value-added gummy candies by using fruit juice concentrates.
RESUMEN
Large amounts of collagen-rich by-products are generated in poultry processing. In particular, gelatin from the by-products of turkey processing is limited. Gelatin extraction from turkey and chicken MDRs (mechanically deboning residue) was the purpose of this study. Both materials were modified at the highest swelling pH for chemical denaturation of collagen and hot water extraction of gelatin was performed at the optimum temperature-time, which was determined to be pH 1.0 and 80°C-6 h, respectively. In these conditions, yields of 9.90% turkey gelatin (TG) and 13.85% chicken gelatin (CG) were produced. They demonstrated similar viscosity, gel strength, and lightness values of 72-73 g, 2.5-2.7 mPas, and 31, respectively. These results are close to those of bovine gelatin (BG). TG with 239.78 g Bloom exhibited higher strength than CG (225.27 g) and BG (220.00 g). The melting and gelation temperatures of CG and BG were 21 and 30°C, respectively, while those of TG were 19 and 28°C. Imino acids (proline + hydroxyproline) of TG (22.82%) were higher than those of CG (20.73%). Fourier transform infrared spectroscopy (FTIR) analysis revealed secondary structure and functional groups of CG and TG similar to those of BG. CG displayed a higher thermal transition temperature than BG, while TG exhibited the highest temperature sensitivity, according to the differential scanning calorimetry (DSC) analysis. In conclusion, TG showed higher potential for effective utilization with higher bloom and imino acids. Overall, turkey and chicken MDRs are a promising and potential alternative source to produce gelatin with comparable properties to bovine gelatin for intended food applications as well as for pharmaceutical and cosmetic fields.