Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Synchrotron Radiat ; 30(Pt 4): 822-830, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37159289

RESUMEN

A von Hámos spectrometer has been implemented in the vacuum interaction chamber 1 of the High Energy Density instrument at the European X-ray Free-Electron Laser facility. This setup is dedicated, but not necessarily limited, to X-ray spectroscopy measurements of samples exposed to static compression using a diamond anvil cell. Si and Ge analyser crystals with different orientations are available for this setup, covering the hard X-ray energy regime with a sub-eV energy resolution. The setup was commissioned by measuring various emission spectra of free-standing metal foils and oxide samples in the energy range between 6 and 11 keV as well as low momentum-transfer inelastic X-ray scattering from a diamond sample. Its capabilities to study samples at extreme pressures and temperatures have been demonstrated by measuring the electronic spin-state changes of (Fe0.5Mg0.5)O, contained in a diamond anvil cell and pressurized to 100 GPa, via monitoring the Fe Kß fluorescence with a set of four Si(531) analyser crystals at close to melting temperatures. The efficiency and signal-to-noise ratio of the spectrometer enables valence-to-core emission signals to be studied and single pulse X-ray emission from samples in a diamond anvil cell to be measured, opening new perspectives for spectroscopy in extreme conditions research.


Asunto(s)
Diamante , Electrones , Diamante/química , Radiografía , Rayos X , Rayos Láser
2.
Biophys J ; 121(20): 3811-3825, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36110043

RESUMEN

In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films. In contrast, we observed that the hemagglutinin 2 fusion peptide (HA2-FP) and the VSV-transmembrane domain (VSV-TMD) can penetrate deeply into the membranes. However, in the case of VSV-TMD, the penetration was suppressed already at low surface pressures, whereas HA2-FP was able to insert even into highly compressed films. Membrane fusion is accompanied by drastic changes of the membrane curvature. To investigate how the peptides affect the curvature of model lipid membranes, we examined the effect of the fusogenic peptides on the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt hydrostatic pressure reduction. We monitored this process in presence and absence of the peptides with small-angle x-ray scattering and found that HA2-FP and VSV-TMD drastically accelerate the equilibration, while the fusion loops of TBEV and VSV stabilize the swollen state of the lipid structures. In this work, we show that the class I fusion peptide of HA2 penetrates deeply into the hydrophobic region of membranes and is able to promote and accelerate the formation of negative curvature. In contrast, we found that the class II and III fusion loops of TBEV and VSV tend to counteract negative membrane curvature.


Asunto(s)
Hemaglutininas , Fusión de Membrana , Péptidos/química , Transición de Fase , Fosfolípidos
3.
Langmuir ; 38(21): 6690-6699, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35588471

RESUMEN

We present a surface-sensitive X-ray scattering study on the influence of gaseous and aerolized perfluorocarbons (FCs) on zwitterionic and anionic phospholipid Langmuir films, which serve as a simplified model system of lung surfactants. It was found that small gaseous FC molecules like F-propane and F-butane penetrate phospholipid monolayers and accumulate between the alkyl chains and form islands. This clustering process can trigger the formation of lipid crystallites at low initial surface pressures. In contrast, the large linear FC F-octyl bromide fluidizes membranes, causing a dissolution of crystalline domains. The bicyclic FC F-decalin accumulates between the alkyl chains of 1,2-dipalmitoyl phosphatidylcholine but cannot penetrate the more densely packed 1,2-dipalmitoyl phosphatidic acid films because of its size. The effects of FCs on lung surfactants are discussed in the framework of currently proposed therapeutic methods for acute respiratory distress syndrome using FC gases, vapor, or aerosol ventilation causing monolayer fluidization effects. This study implies that the highly biocompatible and nontoxic FCs could be beneficial in the treatment of lung diseases with injured nonfunctional lung surfactants in a novel approach for ventilation.


Asunto(s)
Fluorocarburos , Surfactantes Pulmonares , 1,2-Dipalmitoilfosfatidilcolina/química , Fluorocarburos/química , Gases , Pulmón , Fosfolípidos/química , Surfactantes Pulmonares/química , Propiedades de Superficie , Tensoactivos
4.
Soft Matter ; 18(5): 990-998, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35015016

RESUMEN

Many vital processes that take place in biological cells involve remodeling of lipid membranes. These processes take place in a milieu that is packed with various solutes, ranging from ions and small organic osmolytes to proteins and other macromolecules, occupying about 30% of the available volume. In this work, we investigated how molecular crowding, simulated with the polymer polyethylene glycol (PEG), and the osmolytes urea and trimethylamine-N-oxide (TMAO) affect the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt pressure reduction. In absence of additives, swollen cubic crystallites form after the transition, releasing excess water over several hours. This process is reflected in a decreasing lattice constant and was monitored with small angle X-ray scattering. We found that the osmotic pressure exerted by PEG and TMAO, which are displaced from narrow inter-bilayer spaces, accelerates the equilibration. When the radius of gyration of the added PEG was smaller than the radius of the water channels of the cubic phase, the effect became more pronounced with increasing molecular weight of the polymers. As the release of hydration water from the cubic structures is accompanied by an increasing membrane curvature and a reduction of the interface between lipids and aqueous phase, urea, which has a slight affinity to reside near membrane surfaces, stabilized the swollen crystallites and slowed down the equilibration dynamics. Our results support the view that cellular solutes are important contributors to dynamic membrane processes, as they can accelerate dehydration of inter-bilayer spaces and promote or counteract membrane curvature.


Asunto(s)
Glicéridos , Agua , Transición de Fase , Soluciones
5.
Phys Chem Chem Phys ; 23(27): 14845-14856, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34223594

RESUMEN

Knowledge of the microscopic structure of fluids and changes thereof with pressure and temperature is important for the understanding of chemistry and geochemical processes. In this work we investigate the influence of sodium chloride on the hydrogen-bond network in aqueous solution up to supercritical conditions. A combination of in situ X-ray Raman scattering and ab initio molecular dynamics simulations is used to probe the oxygen K-edge of the alkali halide aqueous solution in order to obtain unique information about the oxygen's local coordination around the ions, e.g. solvation-shell structure and the influence of ion pairing. The measured spectra exhibit systematic temperature dependent changes, which are entirely reproduced by calculations on the basis of structural snapshots obtained via ab initio molecular dynamics simulations. Analysis of the simulated trajectories allowed us to extract detailed structural information. This combined analysis reveals a net destabilizing effect of the dissolved ions which is reduced with rising temperature. The observed increased formation of contact ion pairs and occurrence of larger polyatomic clusters at higher temperatures can be identified as a driving force behind the increasing structural similarity between the salt solution and pure water at elevated temperatures and pressures with drawback on the role of hydrogen bonding in the hot fluid. We discuss our findings in view of recent results on hot NaOH and HCl aqueous fluids and emphasize the importance of ion pairing in the interpretation of the microscopic structure of water.

6.
Phys Chem Chem Phys ; 23(42): 24211-24221, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34693949

RESUMEN

The understanding of the microstructure of associated liquids promoted by hydrogen-bonding and constrained by steric hindrance is highly relevant in chemistry, physics, biology and for many aspects of daily life. In this study we use a combination of X-ray diffraction, dielectric spectroscopy and molecular dynamics simulations to reveal temperature induced changes in the microstructure of different octanol isomers, i.e., linear 1-octanol and branched 2-, 3- and 4-octanol. In all octanols, the hydroxyl groups form the basis of chain-, cyclic- or loop-like bonded structures that are separated by outwardly directed alkyl chains. This clustering is analyzed through the scattering pre-peaks observed from X-ray scattering and simulations. The charge ordering which pilots OH aggregation can be linked to the strength of the Debye process observed in dielectric spectroscopy. Interestingly, all methods used here converge to the same interpretation: as one moves from 1-octanol to the branched octanols, the cluster structure evolves from loose large aggregates to a larger number of smaller, tighter aggregates. All alcohols exhibit a peculiar temperature dependence of both the pre-peak and Debye process, which can be understood as a change in microstructure promoted by chain association with increased chain length possibly assisted by ring-opening effects. All these results tend to support the intuitive picture of the entropic constraint provided by branching through the alkyl tails and highlight its capital entropic role in supramolecular assembly.

7.
J Synchrotron Radiat ; 27(Pt 2): 414-424, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153280

RESUMEN

A portable IR fiber laser-heating system, optimized for X-ray emission spectroscopy (XES) and nuclear inelastic scattering (NIS) spectroscopy with signal collection through the radial opening of diamond anvil cells near 90°with respect to the incident X-ray beam, is presented. The system offers double-sided on-axis heating by a single laser source and zero attenuation of incoming X-rays other than by the high-pressure environment. A description of the system, which has been tested for pressures above 100 GPa and temperatures up to 3000 K, is given. The XES spectra of laser-heated Mg0.67Fe0.33O demonstrate the potential to map the iron spin state in the pressure-temperature range of the Earth's lower mantle, and the NIS spectra of laser-heated FeSi give access to the sound velocity of this candidate of a phase inside the Earth's core. This portable system represents one of the few bridges across the gap between laser heating and high-resolution X-ray spectroscopies with signal collection near 90°.

8.
Phys Rev Lett ; 121(3): 038101, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085800

RESUMEN

The influence of natural cosolvent mixtures on the pressure-dependent structure and protein-protein interaction potential of dense protein solutions is studied and analyzed using small-angle X-ray scattering in combination with a liquid-state theoretical approach. The deep-sea osmolyte trimethylamine-N-oxide is shown to play a crucial and singular role in its ability to not only guarantee sustainability of the native protein's folded state under harsh environmental conditions, but it also controls water-mediated intermolecular interactions at high pressure, thereby preventing contact formation and hence aggregation of proteins.


Asunto(s)
Modelos Químicos , Muramidasa/química , Agua/química , Presión Hidrostática , Metilaminas/química , Concentración Osmolar , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
9.
Langmuir ; 34(19): 5403-5408, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29658720

RESUMEN

We present an in situ X-ray reflectivity study of the adsorption behavior of the protein lysozyme on titanium oxide layers under variation of different thermodynamic parameters, such as temperature, hydrostatic pressure, and pH value. Moreover, by varying the layer thickness of the titanium oxide layer on a silicon wafer, changes in the adsorption behavior of lysozyme were studied. In total, we determined less adsorption on titanium oxide compared with silicon dioxide, while increasing the titanium oxide layer thickness causes stronger adsorption. Furthermore, the variation of temperature from 20 to 80 °C yields an increase in the amount of adsorbed lysozyme at the interface. Additional measurements with variation of the pH value of the system in a region between pH 2 and 12 show that the surface charge of both protein and titanium oxide has a crucial role in the adsorption process. Further pressure-dependent experiments between 50 and 5000 bar show a reduction of the amount of adsorbed lysozyme with increasing pressure.


Asunto(s)
Muramidasa/metabolismo , Titanio/química , Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Muramidasa/química , Propiedades de Superficie , Temperatura , Termodinámica
10.
Phys Chem Chem Phys ; 20(10): 7093-7104, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29479628

RESUMEN

Investigating the correlation between structure and activity of oligomeric enzymes at high pressure is essential for understanding intermolecular interactions and reactivity of proteins in cellulo of organisms thriving at extreme environmental conditions as well as for biotechnological applications, such as high-pressure enzymology. In a combined experimental effort employing small-angle X-ray scattering, FT-IR and fluorescence spectroscopy as well as stopped-flow enzyme kinetics in concert with high-pressure techniques, we reveal the pressure-induced conformational changes of the dimeric enzyme horse liver alcohol dehydrogenase (LADH) on the quaternary, secondary and tertiary structural level. Moreover, the effects of cosolutes and crowding agents, mimicking intracellular conditions, have been addressed. Our results show that beyond an increase of enzymatic activity at low pressures, loss of enzyme activity occurs around 600-800 bar, i.e. in a pressure regime where small conformational changes take place in the coenzyme's binding pocket, only. Whereas higher-order oligomers dissociate at low pressures, subunit dissociation of dimeric LADH takes place, depending on the solution conditions, between 2000 and 4000 bar, only. Oligomerization and subunit dissociation are modulated by cosolvents such as urea or trimethylamine-N-oxide as well as by the crowding agent polyethylene glycol, based on their tendency to bind to the protein's interface or act via their excluded volume effect, respectively.


Asunto(s)
Alcohol Deshidrogenasa/química , Animales , Sitios de Unión , Cristalografía por Rayos X/métodos , Caballos , Cinética , Hígado/metabolismo , Metilaminas/química , Presión , Unión Proteica , Conformación Proteica , Desnaturalización Proteica , Multimerización de Proteína , Espectrometría de Fluorescencia/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos
11.
Angew Chem Int Ed Engl ; 56(42): 12958-12961, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28816388

RESUMEN

We have gained new insight into the so-called hydrophobic gap, a molecularly thin region of decreased electron density at the interface between water and a solid hydrophobic surface, by X-ray reflectivity experiments and molecular dynamics simulations at different hydrostatic pressures. Pressure variations show that the hydrophobic gap persists up to a pressure of 5 kbar. The electron depletion in the interfacial region strongly decreases with an increase in pressure, indicating that the interfacial region is compressed more strongly than bulk water. The decrease is most significant up to 2 kbar; beyond that, the pressure response of the depletion is less pronounced.

12.
Langmuir ; 32(11): 2638-43, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26927365

RESUMEN

In this work, the structure of solid-supported lipid multilayers exposed to increased hydrostatic pressure was studied in situ by X-ray reflectometry at the solid-liquid interface between silicon and an aqueous buffer solution. The layers' vertical structure was analyzed up to a maximum pressure of 4500 bar. The multilayers showed phase transitions from the fluid into different gel phases. With increasing pressure, a gradual filling of the sublayers between the hydrophilic head groups with water was observed. This process was inverted when the pressure was decreased, yielding finally smaller water layers than those in the initial state. As is commonly known, water has an abrasive effect on lipid multilayers by the formation of vesicles. We show that increasing pressure can reverse this process so that a controlled switching between multi- and bilayers is possible.


Asunto(s)
Membrana Dobles de Lípidos/química , Dimiristoilfosfatidilcolina/química , Presión Hidrostática , Transición de Fase , Silicio , Agua/química
13.
Phys Chem Chem Phys ; 18(21): 14252-6, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27165990

RESUMEN

We present results from small-angle X-ray scattering and turbidity measurements on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase separation region, and characterize the underlying intermolecular protein-protein interactions as a function of temperature and pressure under charge-screening conditions (0.5 M NaCl). A reentrant liquid-liquid phase separation region is observed at elevated pressures, which may originate in the pressure dependence of the solvent-mediated protein-protein interaction. A temperature-pressure-concentration phase diagram was constructed for highly concentrated lysozyme solutions over a wide range of temperatures, pressures and protein concentrations including the critical region of the liquid-liquid miscibility gap.


Asunto(s)
Muramidasa/química , Presión Hidrostática , Muramidasa/metabolismo , Nefelometría y Turbidimetría , Transición de Fase , Mapas de Interacción de Proteínas , Dispersión del Ángulo Pequeño , Cloruro de Sodio/química , Soluciones/química , Temperatura , Difracción de Rayos X
14.
Phys Chem Chem Phys ; 18(29): 19866-72, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27389481

RESUMEN

Using a combination of high resolution X-ray powder diffraction and X-ray Raman scattering spectroscopy at the B K- and Ca L2,3-edges, we analyzed the reaction products of Ca(BH4)2 after annealing at 350 °C and 400 °C under vacuum conditions. We observed the formation of nanocrystalline/amorphous CaB6 mainly and found only small contributions from amorphous B for annealing times larger than 2 h. For short annealing times of 0.5 h at 400 °C we observed neither CaB12H12 nor CaB6. The results indicate a reaction pathway in which Ca(BH4)2 decomposes to B and CaH2 and finally reacts to form CaB6. These findings confirm the potential of using Ca(BH4)2 as a hydrogen storage medium and imply the desired cycling capabilities for achieving high-density hydrogen storage materials.

15.
Phys Chem Chem Phys ; 18(7): 5397-403, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26818950

RESUMEN

We present an in situ study of the thermal decomposition of Mg(BH4)2 in a hydrogen atmosphere of up to 4 bar and up to 500 °C using X-ray Raman scattering spectroscopy at the boron K-edge and the magnesium L2,3-edges. The combination of the fingerprinting analysis of both edges yields detailed quantitative information on the reaction products during decomposition, an issue of crucial importance in determining whether Mg(BH4)2 can be used as a next-generation hydrogen storage material. This work reveals the formation of reaction intermediate(s) at 300 °C, accompanied by a significant hydrogen release without the occurrence of stable boron compounds such as amorphous boron or MgB12H12. At temperatures between 300 °C and 400 °C, further hydrogen release proceeds via the formation of higher boranes and crystalline MgH2. Above 400 °C, decomposition into the constituting elements takes place. Therefore, at moderate temperatures, Mg(BH4)2 is shown to be a promising high-density hydrogen storage material with great potential for reversible energy storage applications.

16.
Phys Chem Chem Phys ; 18(9): 6925-30, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26881494

RESUMEN

We studied the structure and energetics of supercooled water by means of X-ray Raman and Compton scattering. Under supercooled conditions down to 255 K, the oxygen K-edge measured by X-ray Raman scattering suggests an increase of tetrahedral order similar to the conventional temperature effect observed in non-supercooled water. Compton profile differences indicate contributions beyond the theoretically predicted temperature effect and provide a deeper insight into local structural changes. These contributions suggest a decrease of the electron mean kinetic energy by 3.3 ± 0.7 kJ (mol K)(-1) that cannot be modeled within established water models. Our surprising results emphasize the need for water models that capture in detail the intramolecular structural changes and quantum effects to explain this complex liquid.

17.
Proc Natl Acad Sci U S A ; 110(16): 6301-6, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23479639

RESUMEN

We report on the microscopic structure of water at sub- and supercritical conditions studied using X-ray Raman spectroscopy, ab initio molecular dynamics simulations, and density functional theory. Systematic changes in the X-ray Raman spectra with increasing pressure and temperature are observed. Throughout the studied thermodynamic range, the experimental spectra can be interpreted with a structural model obtained from the molecular dynamics simulations. A spatial statistical analysis using Ripley's K-function shows that this model is homogeneous on the nanometer length scale. According to the simulations, distortions of the hydrogen-bond network increase dramatically when temperature and pressure increase to the supercritical regime. In particular, the average number of hydrogen bonds per molecule decreases to ≈ 0.6 at 600 °C and p = 134 MPa.


Asunto(s)
Calor , Presión , Agua/química , Enlace de Hidrógeno , Modelos Químicos , Simulación de Dinámica Molecular , Espectrometría Raman , Termodinámica
18.
J Synchrotron Radiat ; 21(Pt 1): 76-81, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24365919

RESUMEN

A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.


Asunto(s)
Presión Hidrostática , Rayos X , Muramidasa/química , Propiedades de Superficie
19.
Phys Rev Lett ; 112(2): 028101, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24484044

RESUMEN

We present results from small-angle x-ray scattering data on the effect of high pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase separation region, and characterize the underlying intermolecular protein-protein interactions as a function of temperature and pressure in this region of phase space. A reentrant liquid-liquid phase separation region has been discovered at elevated pressures, which originates in the pressure dependence of the solvent-mediated protein-protein interactions.


Asunto(s)
Modelos Químicos , Muramidasa/química , Coloides/química , Presión Hidrostática , Transición de Fase , Soluciones/química
20.
Langmuir ; 30(39): 11563-6, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25198419

RESUMEN

The behavior of magnetically responsive aqueous Fe(III) surfactant solutions at liquid interfaces is analyzed. Such surfactants attracted much attention, because of the ability to manipulate interfaces by magnetic fields without any use of magnetic nanoparticles. A detailed analysis of the surface properties proves that the mixing of paramagnetic electrolyte solution with anionic, cationic and nonionic surfactants yields the similar magnetic response and no effect of the surfactant charge can be observed. We conclude that the observed magnetic shiftability of interfaces is caused by a combination of the paramagnetic behavior of the bulk liquid and a reduction of the surface tension. Thus, this work gives an alternative interpretation of the properties of "magnetic surfactants" compared to the ones claimed in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA