Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(33): 13662-13671, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37555810

RESUMEN

A series of six new rhenium(I) tricarbonyl complexes [Re(CO)3(N-N)Br] bearing sulfur-bridged dipyridyl (N-N) ligands with three different oxidation states (sulfide (S), sulfoxide (SO), and sulfone (SO2)) are described. Spectroscopic studies show that changing the oxidation state of the ligands influences the photophysical properties of the complexes, with complexes 3 and 6 containing the sulfone ligand exhibiting a lower energy MLCT absorption band tailing into the visible region. Solution-state emission measurements show that these complexes exhibit readily tunable emission energies from 480 to 610 nm, depending on the oxidation state of the sulfur bridge and the presence of substituents on the pyridyl rings. Solid-state emission measurements show that the emission is significantly red-shifted upon oxidation of the sulfur bridge to sulfone with enhanced photoluminescence quantum yield.

2.
Inorg Chem ; 57(21): 13963-13972, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30354094

RESUMEN

Despite the well-reported MLCT [dπ(M) → π*(CNR)] transitions in the isocyano transition metal complexes, emissive complexes with phosphorescence derived from MLCT [dπ(M) → π*(CNR)] were not extensively studied. To provide insights into the design strategy of phosphorescent rhenium(I) complexes with an emissive 3MLCT [dπ(Re) → π*(CNR)] excited state, a series of pentaisocyano rhenium(I) complexes have been synthesized. In contrast to most of the reported penta- or hexaisocyano rhenium(I) complexes with unsubstituted or alkyl- or monohalo-substituted phenylisocyanide ligands, which only exhibit photoluminescence in 77 K glassy medium, the solutions of all of these complexes were found to show phosphorescence at room temperature. Detailed study on their emission properties revealed that they are derived from the 3MLCT [dπ(Re) → π*(CNR)] excited state mixed with LL'CT character. It has been shown that the strong electron-withdrawing substituents on the isocyanide ligands can lower the energy of the MLCT [dπ(Re) → π*(CNR)] state and raise the deactivating ligand-field state. These effects are the crucial criteria to render the pentaisocyano rhenium(I) complexes emissive. Moreover, the emission properties in terms of energy, lifetime, and quantum yields can also be enhanced by the ancillary ligand.

3.
Dalton Trans ; 52(41): 15071-15077, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812405

RESUMEN

A luminescent trimethylamine (TMA) sensor, PTMA-Ir, has been designed and synthesized through immobilizing a phosphorescent iridium(III) complex on a TMA-imprinted polymer. Detailed study shows that the quenching of phosphorescence of PTMA-Ir can serve as a reporter for the binding of TMA on the imprinting sites, thus providing a sensitive, selective, and rapid detection of TMA in both aqueous solutions and gaseous states. Loading PTMA-Ir on filter paper produced a deposition T-Ir, the phosphorescence of which is quenched within 5 s upon exposure to TMA vapor with detection limits of 9.0 ± 0.1 ppm under argon and 15.0 ± 0.1 ppm in an air atmosphere. This work provided an effective method for establishing an imprinting polymer-immobilized luminescent amine sensor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA