Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334298

RESUMEN

To identify U.S. lead exposure risk hotspots, we expanded upon geospatial statistical methods from a published Michigan case study. The evaluation of identified hotspots using five lead indices, based on housing age and sociodemographic data, showed moderate-to-substantial agreement with state-identified higher-risk locations from nine public health department reports (45-78%) and with hotspots of children's blood lead data from Michigan and Ohio (e.g., Cohen's kappa scores of 0.49-0.63). Applying geospatial cluster analysis and 80th-100th percentile methods to the lead indices, the number of U.S. census tracts ranged from ∼8% (intersection of indices) to ∼41% (combination of indices). Analyses of the number of children <6 years old living in those census tracts revealed the states (e.g., Illinois, Michigan, New Jersey, New York, Ohio, Pennsylvania, Massachusetts, California, Texas) and counties with highest potential lead exposure risk. Results support use of available lead indices as surrogates to identify locations in the absence of consistent, complete blood lead level (BLL) data across the United States. Ground-truthing with local knowledge, additional BLL data, and environmental data is needed to improve identification and analysis of lead exposure and BLL hotspots for interventions. While the science evolves, these screening results can inform "deeper dive" analyses for targeting lead actions.

2.
Am J Public Health ; 112(S7): S658-S669, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36179290

RESUMEN

For this state-of-science overview of geospatial approaches for identifying US communities with high lead-exposure risk, we compiled and summarized public data and national maps of lead indices and models, environmental lead indicators, and children's blood lead surveillance data. Currently available indices and models are primarily constructed from housing-age and sociodemographic data; differing methods, variables, data, weighting schemes, and geographic scales yield maps with different exposure risk profiles. Environmental lead indicators are available (e.g., air, drinking water, dust, soil) at different spatial scales, but key gaps remain. Blood lead level data have limitations as testing, reporting, and completeness vary across states. Mapping tools and approaches developed by federal agencies and other groups for different purposes present an opportunity for greater collaboration. Maps, data visualization tools, and analyses that synthesize available geospatial efforts can be evaluated and improved with local knowledge and blood lead data to refine identification of high-risk locations for prioritizing prevention efforts and targeting risk-reduction strategies. Remaining challenges are discussed along with a work-in-progress systematic approach for cross-agency data integration, toward advancing "whole-of-government" public health protection from lead exposures. (Am J Public Health. 2022;112(S7):S658-S669. https://doi.org/10.2105/AJPH.2022.307051).


Asunto(s)
Agua Potable , Plomo , Niño , Polvo , Exposición a Riesgos Ambientales/prevención & control , Agencias Gubernamentales , Humanos , Suelo
3.
Environ Sci Technol ; 56(8): 5266-5275, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35380802

RESUMEN

1,4-Dioxane is a persistent and mobile organic chemical that has been found by the United States Environmental Protection Agency (USEPA) to be an unreasonable risk to human health in some occupational contexts. 1,4-Dioxane is released into the environment as industrial waste and occurs in some personal-care products as an unintended byproduct. However, limited exposure assessments have been conducted outside of an occupational context. In this study, the USEPA simulation modeling tool, Stochastic Human Exposure and Dose Simulator-High Throughput (SHEDS-HT), was adapted to estimate the exposure and chemical mass released down the drain (DTD) from drinking water consumption and product use. 1,4-Dioxane concentrations measured in drinking water and consumer products were used by SHEDS-HT to evaluate and compare the contributions of these sources to exposure and mass released DTD. Modeling results showed that compared to people whose daily per capita exposure came from only products (2.29 × 10-7 to 2.92 × 10-7 mg/kg/day), people exposed to both contaminated water and product use had higher per capita median exposures (1.90 × 10-6 to 4.27 × 10-6 mg/kg/day), with exposure mass primarily attributable to water consumption (75-91%). Last, we demonstrate through simulation that while a potential regulatory action could broadly reduce DTD release, the proportional reduction in exposure would be most significant for people with no or low water contamination.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Dioxanos/análisis , Exposición a Riesgos Ambientales/análisis , Humanos , Compuestos Orgánicos , Medición de Riesgo , Estados Unidos , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Technol ; 55(9): 6505-6517, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33856768

RESUMEN

The intrinsic metabolic clearance rate (Clint) and the fraction of the chemical unbound in plasma (fup) serve as important parameters for high-throughput toxicokinetic (TK) models, but experimental data are limited for many chemicals. Open-source quantitative structure-activity relationship (QSAR) models for both parameters were developed to offer reliable in silico predictions for a diverse set of chemicals regulated under the U.S. law, including pharmaceuticals, pesticides, and industrial chemicals. As a case study to demonstrate their utility, model predictions served as inputs to the TK component of a risk-based prioritization approach based on bioactivity/exposure ratios (BERs), in which a BER < 1 indicates that exposures are predicted to exceed a biological activity threshold. When applied to a subset of the Tox21 screening library (6484 chemicals), we found that the proportion of chemicals with BER <1 was similar using either in silico (1133/6484; 17.5%) or in vitro (148/848; 17.5%) parameters. Further, when considering only the chemicals in the Tox21 set with in vitro data, there was a high concordance of chemicals classified with either BER <1 or >1 using either in silico or in vitro parameters (767/848, 90.4%). Thus, the presented QSARs may be suitable for prioritizing the risk posed by many chemicals for which measured in vitro TK data are lacking.


Asunto(s)
Modelos Biológicos , Relación Estructura-Actividad Cuantitativa , Simulación por Computador , Toxicocinética
5.
Environ Sci Technol ; 55(20): 14329-14330, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609843

RESUMEN

The intrinsic metabolic clearance rate (Clint) and fraction of chemical unbound in plasma (fup) serve as important parameters for high throughput toxicokinetic models, but experimental data are limited for many chemicals. Open-source quantitative structure-activity relationship (QSAR) models for both parameters were developed to offer reliable in silico predictions for a diverse set of chemicals regulated under U.S. law, including pharmaceuticals, pesticides, and industrial chemicals. As a case study to demonstrate their utility, model predictions served as inputs to the TK component of a risk-based prioritization approach based on Bioactivity: Exposure Ratios (BER), in which a BER < 1 indicates exposures are predicted to exceed a biological activity threshold. When applied to a subset of the Tox21 screening library (6631 chemicals) we found that the proportion of chemicals with BER < 1 was similar using either in silico (1337/6631; 20.16%) or in vitro (151/850; 17.76%) parameters. Further, when considering only the chemicals in the Tox21 set with in vitro data, there was a high concordance of chemicals classified with either BER < 1 or >1 using either in silico or in vitro parameters (776/850, 91.30%). Thus, the presented QSARs may be suitable for prioritizing the risk posed by many chemicals for which measured in vitro TK data are lacking.

6.
Risk Anal ; 41(9): 1716-1735, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33331033

RESUMEN

The use of consumer products presents a potential for chemical exposures to humans. Toxicity testing and exposure models are routinely employed to estimate risks from their use; however, a key challenge is the sparseness of information concerning who uses products and which products are used contemporaneously. Our goal was to demonstrate a method to infer use patterns by way of purchase data. We examined purchase patterns for three types of personal care products (cosmetics, hair care, and skin care) and two household care products (household cleaners and laundry supplies) using data from 60,000 households collected over a one-year period in 2012. The market basket analysis methodology frequent itemset mining (FIM) was used to identify co-occurring sets of product purchases for all households and demographic groups based on income, education, race/ethnicity, and family composition. Our methodology captured robust co-occurrence patterns for personal and household products, globally and for different demographic groups. FIM identified cosmetic co-occurrence patterns captured in prior surveys of cosmetic use, as well as a trend of increased diversity of cosmetic purchases as children mature to teenage years. We propose that consumer product purchase data can be mined to inform person-oriented use patterns for high-throughput chemical screening applications, for aggregate and combined chemical risk evaluations.


Asunto(s)
Cosméticos , Minería de Datos , Exposición a Riesgos Ambientales , Productos Domésticos , Humanos
7.
PLoS Comput Biol ; 12(2): e1004495, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26871706

RESUMEN

Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals.


Asunto(s)
Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Animales , Biología Computacional , Humanos , Bases del Conocimiento , Ratones , Ratas , Porcinos
8.
J Chem Inf Model ; 56(11): 2243-2252, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27684444

RESUMEN

The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data are scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict Fub for environmentally relevant chemicals via machine learning techniques. Quantitative structure-activity relationship (QSAR) models were constructed with k nearest neighbors (kNN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18Fub. The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0.11-0.14), and acids (MAE 0.14-0.17). A consensus model had the highest accuracy across both pharmaceuticals (MAE 0.151-0.155) and environmentally relevant chemicals (MAE 0.110-0.131). The inclusion of the majority of the ToxCast test sets within the AD of the consensus model, coupled with high prediction accuracy for these chemicals, indicates the model provides a QSAR for Fub that is broadly applicable to both pharmaceuticals and environmentally relevant chemicals.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Ambiente , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Relación Estructura-Actividad Cuantitativa , Máquina de Vectores de Soporte , Humanos , Unión Proteica
9.
Crit Rev Toxicol ; 44(7): 600-17, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25068490

RESUMEN

Lipophilic persistent environmental chemicals (LPECs) have the potential to accumulate within a woman's body lipids over the course of many years prior to pregnancy, to partition into human milk, and to transfer to infants upon breastfeeding. As a result of this accumulation and partitioning, a breastfeeding infant's intake of these LPECs may be much greater than his/her mother's average daily exposure. Because the developmental period sets the stage for lifelong health, it is important to be able to accurately assess chemical exposures in early life. In many cases, current human health risk assessment methods do not account for differences between maternal and infant exposures to LPECs or for lifestage-specific effects of exposure to these chemicals. Because of their persistence and accumulation in body lipids and partitioning into breast milk, LPECs present unique challenges for each component of the human health risk assessment process, including hazard identification, dose-response assessment, and exposure assessment. Specific biological modeling approaches are available to support both dose-response and exposure assessment for lactational exposures to LPECs. Yet, lack of data limits the application of these approaches. The goal of this review is to outline the available approaches and to identify key issues that, if addressed, could improve efforts to apply these approaches to risk assessment of lactational exposure to these chemicals.


Asunto(s)
Contaminantes Ambientales/análisis , Exposición Materna , Leche Humana/química , Medición de Riesgo , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Modelos Teóricos , Método de Montecarlo , Embarazo , Ratas , Proyectos de Investigación
10.
Artículo en Inglés | MEDLINE | ID: mdl-38575709

RESUMEN

BACKGROUND: Lead is a persistent, ubiquitous pollutant whose historical sources have been largely addressed through regulation and voluntary actions. The United States (U.S.) has achieved significant decreases in children's blood lead levels (BLL) over the past 40 years; however, there is no known safe level of Pb exposure. Some communities continue to be disproportionately impacted by exposure to Pb, including Black children and families living in older homes. OBJECTIVE: To identify Ohio (OH) census tracts with children exposed to Pb and evaluate potential exposure determinants. METHODS: We obtained individual children's blood Pb data from 2005-2018 in OH. The percent of children with elevated BLL (EBLL) was calculated for OH census tracts using three blood Pb reference values (3.5, 5, and 10 µg/dL). Getis-Ord Gi* geospatial hotspot or top 20th percentile methodologies were then applied to identify "hotspots." Findings across multiple time periods and blood Pb reference values were evaluated and compared with existing Pb exposure indices and models. RESULTS: Consistency was observed across different blood Pb reference values, with the main hotspots identified at 3.5 µg/dL, also identified at 5 and 10 µg/dL. Substantial gains in public health were demonstrated, with the biggest decreases in the number of census tracts with EBLL observed between 2008-2010 and 2011-2013. Across OH, 355 census tracts (of 2850) were identified as hotspots across 17 locations, with the majority in the most populated cites. Generally, old housing and sociodemographic factors were indicators of these EBLL hotspots. A smaller number of hotspots were not associated with these exposure determinants. Variables of race, income, and education level were all strong predictors of hotspots. IMPACT STATEMENT: The Getis-Ord Gi* geospatial hotspot analysis can inform local investigations into potential Pb exposures for children living in OH. The successful application of a generalizable childhood blood Pb methodology at the census tract scale provides results that are more readily actionable. The moderate agreement of the measured blood Pb results with public Pb indices provide confidence that these indices can be used in the absence of available blood Pb surveillance data. While not a replacement for universal blood Pb testing, a consistent approach can be applied to identify areas where Pb exposure may be problematic.

11.
Risk Anal ; 33(9): 1582-95, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23398277

RESUMEN

When assessing risks posed by environmental chemical mixtures, whole mixture approaches are preferred to component approaches. When toxicological data on whole mixtures as they occur in the environment are not available, Environmental Protection Agency guidance states that toxicity data from a mixture considered "sufficiently similar" to the environmental mixture can serve as a surrogate. We propose a novel method to examine whether mixtures are sufficiently similar, when exposure data and mixture toxicity study data from at least one representative mixture are available. We define sufficient similarity using equivalence testing methodology comparing the distance between benchmark dose estimates for mixtures in both data-rich and data-poor cases. We construct a "similar mixtures risk indicator"(SMRI) (analogous to the hazard index) on sufficiently similar mixtures linking exposure data with mixtures toxicology data. The methods are illustrated using pyrethroid mixtures occurrence data collected in child care centers (CCC) and dose-response data examining acute neurobehavioral effects of pyrethroid mixtures in rats. Our method shows that the mixtures from 90% of the CCCs were sufficiently similar to the dose-response study mixture. Using exposure estimates for a hypothetical child, the 95th percentile of the (weighted) SMRI for these sufficiently similar mixtures was 0.20 (i.e., where SMRI <1, less concern; >1, more concern).


Asunto(s)
Contaminantes Ambientales/toxicidad , Plaguicidas/toxicidad , Medición de Riesgo/métodos , Toxicología/métodos , Absorción , Algoritmos , Guarderías Infantiles , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Humanos , Lactante , Modelos Estadísticos , Piretrinas/análisis , Piretrinas/toxicidad , Estados Unidos , United States Environmental Protection Agency
12.
Toxics ; 11(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36851038

RESUMEN

Toxicokinetic (TK) models have been used for decades to estimate concentrations of per-and polyfluoroalkyl substances (PFAS) in serum. However, model complexity has varied across studies depending on the application and the state of the science. This scoping effort seeks to systematically map the current landscape of PFAS TK models by categorizing different trends and similarities across model type, PFAS, and use scenario. A literature review using Web of Science and SWIFT-Review was used to identify TK models used for PFAS. The assessment covered publications from 2005-2020. PFOA, the PFAS for which most models were designed, was included in 69 of the 92 papers, followed by PFOS with 60, PFHxS with 22, and PFNA with 15. Only 4 of the 92 papers did not include analysis of PFOA, PFOS, PFNA, or PFHxS. Within the corpus, 50 papers contained a one-compartment model, 17 two-compartment models were found, and 33 used physiologically based pharmacokinetic (PBTK) models. The scoping assessment suggests that scientific interest has centered around two chemicals-PFOA and PFOS-and most analyses use one-compartment models in human exposure scenarios.

13.
Toxics ; 11(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36850973

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a diverse group of man-made chemicals that are commonly found in body tissues. The toxicokinetics of most PFAS are currently uncharacterized, but long half-lives (t½) have been observed in some cases. Knowledge of chemical-specific t½ is necessary for exposure reconstruction and extrapolation from toxicological studies. We used an ensemble machine learning method, random forest, to model the existing in vivo measured t½ across four species (human, monkey, rat, mouse) and eleven PFAS. Mechanistically motivated descriptors were examined, including two types of surrogates for renal transporters: (1) physiological descriptors, including kidney geometry, for renal transporter expression and (2) structural similarity of defluorinated PFAS to endogenous chemicals for transporter affinity. We developed a classification model for t½ (Bin 1: <12 h; Bin 2: <1 week; Bin 3: <2 months; Bin 4: >2 months). The model had an accuracy of 86.1% in contrast to 32.2% for a y-randomized null model. A total of 3890 compounds were within domain of the model, and t½ was predicted using the bin medians: 4.9 h, 2.2 days, 33 days, and 3.3 years. For human t½, 56% of PFAS were classified in Bin 4, 7% were classified in Bin 3, and 37% were classified in Bin 2. This model synthesizes the limited available data to allow tentative extrapolation and prioritization.

14.
Artículo en Inglés | MEDLINE | ID: mdl-22202228

RESUMEN

Biomonitoring is the process by which biomarkers are measured in human tissues and specimens to evaluate exposures. Given the growing number of population-based biomonitoring surveys, there is now an escalated interest in using biomarker data to reconstruct exposures for supporting risk assessment and risk management. While detection of biomarkers is de facto evidence of exposure and absorption, biomarker data cannot be used to reconstruct exposure unless other information is available to establish the external exposure-biomarker concentration relationship. In this review, the process of using biomarker data and other information to reconstruct human exposures is examined. Information that is essential to the exposure reconstruction process includes (1) the type of biomarker based on its origin (e.g., endogenous vs. exogenous), (2) the purpose/design of the biomonitoring study (e.g., occupational monitoring), (3) exposure information (including product/chemical use scenarios and reasons for expected contact, the physicochemical properties of the chemical and nature of the residues, and likely exposure scenarios), and (4) an understanding of the biological system and mechanisms of clearance. This review also presents the use of exposure modeling, pharmacokinetic modeling, and molecular modeling to assist in integrating these various types of information.


Asunto(s)
Biomarcadores/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Animales , Monitoreo del Ambiente/métodos , Humanos , Modelos Biológicos , Modelos Moleculares , Medición de Riesgo/métodos , Gestión de Riesgos/métodos
15.
Risk Anal ; 32(2): 224-36, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21801190

RESUMEN

A challenge with multiple chemical risk assessment is the need to consider the joint behavior of chemicals in mixtures. To address this need, pharmacologists and toxicologists have developed methods over the years to evaluate and test chemical interaction. In practice, however, testing of chemical interaction more often comprises ad hoc binary combinations and rarely examines higher order combinations. One explanation for this practice is the belief that there are simply too many possible combinations of chemicals to consider. Indeed, under stochastic conditions the possible number of chemical combinations scales geometrically as the pool of chemicals increases. However, the occurrence of chemicals in the environment is determined by factors, economic in part, which favor some chemicals over others. We investigate methods from the field of biogeography, originally developed to study avian species co-occurrence patterns, and adapt these approaches to examine chemical co-occurrence. These methods were applied to a national survey of pesticide residues in 168 child care centers from across the country. Our findings show that pesticide co-occurrence in the child care center was not random but highly structured, leading to the co-occurrence of specific pesticide combinations. Thus, ecological studies of species co-occurrence parallel the issue of chemical co-occurrence at specific locations. Both are driven by processes that introduce structure in the pattern of co-occurrence. We conclude that the biogeographical tools used to determine when this structure occurs in ecological studies are relevant to evaluations of pesticide mixtures for exposure and risk assessment.


Asunto(s)
Mezclas Complejas , Geografía , Modelos Teóricos , Plaguicidas/química , Medición de Riesgo
16.
Environ Health Perspect ; 130(7): 77004, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35894594

RESUMEN

BACKGROUND: Despite great progress in reducing environmental lead (Pb) levels, many children in the United States are still being exposed. OBJECTIVE: Our aim was to develop a generalizable approach for systematically identifying, verifying, and analyzing locations with high prevalence of children's elevated blood Pb levels (EBLLs) and to assess available Pb models/indices as surrogates, using a Michigan case study. METHODS: We obtained ∼1.9 million BLL test results of children <6 years of age in Michigan from 2006-2016; we then evaluated them for data representativeness by comparing two percentage EBLL (%EBLL) rates (number of children tested with EBLL divided by both number of children tested and total population). We analyzed %EBLLs across census tracts over three time periods and between two EBLL reference values (≥5 vs. ≥10µg/dL) to evaluate consistency. Locations with high %EBLLs were identified by a top 20 percentile method and a Getis-Ord Gi* geospatial cluster "hotspot" analysis. For the locations identified, we analyzed convergences with three available Pb exposure models/indices based on old housing and sociodemographics. RESULTS: Analyses of 2014-2016 %EBLL data identified 11 Michigan locations via cluster analysis and 80 additional locations via the top 20 percentile method and their associated census tracts. Data representativeness and consistency were supported by a 0.93 correlation coefficient between the two EBLL rates over 11 y, and a Kappa score of ∼0.8 of %EBLL hotspots across the time periods (2014-2016) and reference values. Many EBLL hotspot locations converge with current Pb exposure models/indices; others diverge, suggesting additional Pb sources for targeted interventions. DISCUSSION: This analysis confirmed known Pb hotspot locations and revealed new ones at a finer geographic resolution than previously available, using advanced geospatial statistical methods and mapping/visualization. It also assessed the utility of surrogates in the absence of blood Pb data. This approach could be applied to other states to inform Pb mitigation and prevention efforts. https://doi.org/10.1289/EHP9705.


Asunto(s)
Intoxicación por Plomo , Plomo , Tramo Censal , Niño , Exposición a Riesgos Ambientales , Vivienda , Humanos , Intoxicación por Plomo/epidemiología , Michigan/epidemiología , Estados Unidos
17.
Comput Toxicol ; 17: 100142, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34017929

RESUMEN

The extent of plasma protein binding is an important compound-specific property that influences a compound's pharmacokinetic behavior and is a critical input parameter for predicting exposure in physiologically based pharmacokinetic (PBPK) modeling. When experimentally determined fraction unbound in plasma (fup) data are not available, quantitative structure-property relationship (QSPR) models can be used for prediction. Because available QSPR models were developed based on training sets containing pharmaceutical-like compounds, we compared their prediction accuracy for environmentally relevant and pharmaceutical compounds. Fup values were calculated using Ingle et al., Watanabe et al. and ADMET Predictor (Simulation Plus). The test set included 818 pharmaceutical and environmentally relevant compounds with fup values ranging from 0.01 to 1. Overall, the three QSPR models resulted in over-prediction of fup for highly binding compounds and under-prediction for low or moderately binding compounds. For highly binding compounds (0.01≤ fup ≤ 0.25), Watanabe et al. performed better with a lower mean absolute error (MAE) of 6.7% and a lower mean absolute relative prediction error (RPE) of 171.7 % than other methods. For low to moderately binding compounds, both Ingle et al. and ADMET Predictor performed better than Watanabe et al. with superior MAE and RPE values. The positive polar surface area, the number of basic functional groups and lipophilicity were the most important chemical descriptors for predicting fup. This study demonstrated that the prediction of fup was the most uncertain for highly binding compounds. This suggested that QSPR-predicted fup values should be used with caution in PBPK modeling.

18.
Environ Health Perspect ; 129(6): 67006, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34160298

RESUMEN

BACKGROUND: Chemicals in consumer products are a major contributor to human chemical coexposures. Consumers purchase and use a wide variety of products containing potentially thousands of chemicals. There is a need to identify potential real-world chemical coexposures to prioritize in vitro toxicity screening. However, due to the vast number of potential chemical combinations, this identification has been a major challenge. OBJECTIVES: We aimed to develop and implement a data-driven procedure for identifying prevalent chemical combinations to which humans are exposed through purchase and use of consumer products. METHODS: We applied frequent itemset mining to an integrated data set linking consumer product chemical ingredient data with product purchasing data from 60,000 households to identify chemical combinations resulting from co-use of consumer products. RESULTS: We identified co-occurrence patterns of chemicals over all households as well as those specific to demographic groups based on race/ethnicity, income, education, and family composition. We also identified chemicals with the highest potential for aggregate exposure by identifying chemicals occurring in multiple products used by the same household. Last, a case study of chemicals active in estrogen and androgen receptor in silico models revealed priority chemical combinations co-targeting receptors involved in important biological signaling pathways. DISCUSSION: Integration and comprehensive analysis of household purchasing data and product-chemical information provided a means to assess human near-field exposure and inform selection of chemical combinations for high-throughput screening in in vitro assays. https://doi.org/10.1289/EHP8610.


Asunto(s)
Seguridad de Productos para el Consumidor , Exposición a Riesgos Ambientales , Simulación por Computador , Humanos
19.
Toxicol Appl Pharmacol ; 244(2): 208-17, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20045431

RESUMEN

Immature rats are more susceptible than adults to the acute neurotoxicity of pyrethroid insecticides like deltamethrin (DLM). A companion kinetics study (Kim et al., in press) revealed that blood and brain levels of the neuroactive parent compound were inversely related to age in rats 10, 21, 40 and 90 days old. The objective of the current study was to modify a physiologically based pharmacokinetic (PBPK) model of DLM disposition in the adult male Sprague-Dawley rat (Mirfazaelian et al., 2006), so blood and target organ dosimetry could be accurately predicted during maturation. Age-specific organ weights and age-dependent changes in the oxidative and hydrolytic clearance of DLM were modeled with a generalized Michaelis-Menten model for growth and the summary equations incorporated into the PBPK model. The model's simulations compared favorably with empirical DLM time-courses in plasma, blood, brain and fat for the four age-groups evaluated (10, 21, 40 and 90 days old). PND 10 pups' area under the 24-h brain concentration time curve (AUC(0-24h)) was 3.8-fold higher than that of the PND 90 adults. Our maturing rat PBPK model allows for updating with age- and chemical-dependent parameters, so pyrethroid dosimetry can be forecast in young and aged individuals. Hence, this model provides a methodology for risk assessors to consider age-specific adjustments to oral Reference Doses on the basis of PK differences.


Asunto(s)
Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Modelos Biológicos , Nitrilos/administración & dosificación , Nitrilos/farmacocinética , Piretrinas/administración & dosificación , Piretrinas/farmacocinética , Factores de Edad , Envejecimiento/sangre , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Masculino , Nitrilos/sangre , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/fisiología , Piretrinas/sangre , Ratas , Ratas Sprague-Dawley , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
20.
J Toxicol Environ Health B Crit Rev ; 13(2-4): 299-313, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20574904

RESUMEN

A new generation of scientific tools has emerged to rapidly measure signals from cells, tissues, and organisms following exposure to chemicals. High-visibility efforts to apply these tools for efficient toxicity testing raise important research questions in exposure science. As vast quantities of data from high-throughput screening (HTS) in vitro toxicity assays become available, this new toxicity information must be translated to assess potential risks to human health from environmental exposures. Exposure information is required to link information on potential toxicity of environmental contaminants to real-world health outcomes. In the immediate term, tools are required to characterize and classify thousands of environmental chemicals in a rapid and efficient manner to prioritize testing and assess potential for risk to human health. Rapid risk assessment requires prioritization based on both hazard and exposure dimensions of the problem. To address these immediate needs within the context of longer term objectives for chemical evaluation and risk management, a translation framework is presented for incorporating toxicity and exposure information to inform public health decisions at both the individual and population levels. Examples of required exposure science contributions are presented with a focus on early advances in tools for modeling important links across the source-to-outcome paradigm. ExpoCast, a new U.S. Environmental Protection Agency (EPA) program aimed at developing novel approaches and metrics to screen and evaluate chemicals based on the potential for biologically relevant human exposures is introduced. The goal of ExpoCast is to advance characterization of exposure required to translate findings in computational toxicology to information that can be directly used to support exposure and risk assessment for decision making and improved public health.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Toxicología/métodos , Animales , Biología Computacional/métodos , Toma de Decisiones , Contaminantes Ambientales/química , Sustancias Peligrosas/efectos adversos , Sustancias Peligrosas/análisis , Ensayos Analíticos de Alto Rendimiento , Humanos , Medición de Riesgo , Gestión de Riesgos/métodos , Pruebas de Toxicidad/métodos , Estados Unidos , United States Environmental Protection Agency
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA