RESUMEN
Platinum-based chemotherapy remains widely used in advanced non-small cell lung cancer (NSCLC) despite experimental evidence of its potential to induce long-term detrimental effects, including the promotion of pro-metastatic microenvironments. In this study, we investigated the interconnected pathways underlying the promotion of cisplatin-induced metastases. In tumor-free mice, cisplatin treatment resulted in an expansion in the bone marrow of CCR2+CXCR4+Ly6Chigh inflammatory monocytes (IMs) and an increase in lung levels of stromal SDF-1, the CXCR4 ligand. In experimental lung metastasis assays, cisplatin-induced IMs promoted the extravasation of tumor cells and the expansion of CD133+CXCR4+ metastasis-initiating cells (MICs). Peptide R, a novel CXCR4 inhibitor designed as an SDF-1 mimetic peptide, prevented cisplatin-induced IM expansion, the recruitment of IMs into the lungs, and the promotion of metastasis. At the primary tumor site, cisplatin treatment reduced tumor size while simultaneously inducing tumor release of SDF-1, MIC expansion, and recruitment of pro-invasive CXCR4+ macrophages. Co-recruitment of MICs and CCR2+CXCR4+ IMs to distant SDF-1-enriched sites also promoted spontaneous metastases that were prevented by CXCR4 blockade. In clinical specimens from NSCLC patients SDF-1 levels were found to be higher in platinum-treated samples and related to a worse clinical outcome. Our findings reveal that activation of the CXCR4/SDF-1 axis specifically mediates the pro-metastatic effects of cisplatin and suggest CXCR4 blockade as a possible novel combination strategy to control metastatic disease.
Asunto(s)
Antígeno AC133/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Quimiocina CXCL12/metabolismo , Cisplatino/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Monocitos/metabolismo , Péptidos/administración & dosificación , Receptores CXCR4/metabolismo , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Interacciones Farmacológicas , Humanos , Neoplasias Pulmonares/inmunología , Masculino , Ratones , Metástasis de la Neoplasia , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/inmunología , Péptidos/farmacología , Células RAW 264.7 , Receptores CXCR4/antagonistas & inhibidores , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
We have shown that human B-cell non-Hodgkin lymphomas (B-NHLs) express heat shock protein (HSP)H1/105 in function of their aggressiveness. Here, we now clarify its role as a functional B-NHL target by testing the hypothesis that it promotes the stabilization of key lymphoma oncoproteins. HSPH1 silencing in 4 models of aggressive B-NHLs was paralleled by Bcl-6 and c-Myc downregulation. In vitro and in vivo analysis of HSPH1-silenced Namalwa cells showed that this effect was associated with a significant growth delay and the loss of tumorigenicity when 10(4) cells were injected into mice. Interestingly, we found that HSPH1 physically interacts with c-Myc and Bcl-6 in both Namalwa cells and primary aggressive B-NHLs. Accordingly, expression of HSPH1 and either c-Myc or Bcl-6 positively correlated in these diseases. Our study indicates that HSPH1 concurrently favors the expression of 2 key lymphoma oncoproteins, thus confirming its candidacy as a valuable therapeutic target of aggressive B-NHLs.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Choque Térmico HSP110/antagonistas & inhibidores , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Proteínas del Choque Térmico HSP110/genética , Humanos , Linfoma de Células B/patología , Ratones , Ratones SCID , Proteínas Proto-Oncogénicas c-bcl-6 , Proteínas Proto-Oncogénicas c-myc/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Altered degradation and deposition of extracellular matrix are hallmarks of tumor progression and response to therapy. From a microarray supervised analysis on a dataset of chemotherapy-treated breast carcinoma patients, maspin, a member of the serpin protease inhibitor family, has been the foremost variable identified in non-responsive versus responsive tumors. Accordingly, in a series of 52 human breast carcinomas, we detected high maspin expression in tumors that progressed under doxorubicin (DXR)-based chemotherapy. Our analysis of the role of maspin in response to chemotherapy in human MCF7 and MDAMB231 breast and SKOV3 ovarian carcinoma cells transfected to overexpress maspin and injected into mice showed that maspin overexpression led to DXR resistance through the maspin-induced collagen-enriched microenvironment and that an anti-maspin neutralizing monoclonal antibody reversed the collagen-dependent DXR resistance. Impaired diffusion and decreased DXR activity were also found in tumors derived from Matrigel-embedded cells, where abundant collagen fibers characterize the tumor matrix. Conversely, liposome-based DXR reached maspin-overexpressing tumor cells despite the abundant extracellular matrix and was more efficient in reducing tumor growth. Our results identify maspin-induced accumulation of collagen fibers as a cause of disease progression under DXR chemotherapy for breast cancer. Use of a more hydrophilic DXR formulation or of a maspin inhibitor in combination with chemotherapy holds the promise of more consistent responses to maspin-overexpressing tumors and dense-matrix tumors in general.
Asunto(s)
Neoplasias de la Mama/metabolismo , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias Ováricas/metabolismo , Serpinas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Progresión de la Enfermedad , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Serpinas/biosíntesis , Serpinas/inmunologíaRESUMEN
Histone deacetylases (HDAC) extensively contribute to the c-Myc oncogenic program, pointing to their inhibition as an effective strategy against c-Myc-overexpressing cancers. We, thus, studied the therapeutic activity of the new-generation pan-HDAC inhibitor ITF2357 (Givinostat®) against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas (B-NHLs). ITF2357 anti-proliferative and pro-apoptotic effects were analyzed in B-NHL cell lines with c-Myc translocations (Namalwa, Raji and DOHH-2), stabilizing mutations (Raji) or post-transcriptional alterations (SU-DHL-4) in relationship to c-Myc modulation. ITF2357 significantly delayed the in vitro growth of all B-NHL cell lines by inducing G1 cell-cycle arrest, eventually followed by cell death. These events correlated with the extent of c-Myc protein, but not mRNA, downregulation, indicating the involvement of post-transcriptional mechanisms. Accordingly, c-Myc-targeting microRNAs let-7a and miR-26a were induced in all treated lymphomas and the cap-dependent translation machinery components 4E-BP1, eIF4E and eIF4G, as well as their upstream regulators, Akt and PIM kinases, were inhibited in function of the cell sensitivity to ITF2357, and, in turn, c-Myc downregulation. In vivo, ITF2357 significantly hampered the growth of Namalwa and Raji xenografts in immunodeficient mice. Noteworthy, its combination with suboptimal cyclophosphamide, achieved complete remissions in most animals and equaled or even exceeded the activity of optimal cyclophosphamide. Collectively, our findings provide the rationale for testing the clinical advantages of adding ITF2357 to current therapies for the still very ominous c-Myc-overexpressing lymphomas. They equally provide the proof-of-concept for its clinical evaluation in rational combination with the promising inhibitors of B-cell receptor and PI3K/Akt/mTOR axis currently in the process of development.
Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Linfoma de Células B/prevención & control , MicroARNs/genética , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Ciclofosfamida/farmacología , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Ratones , Ratones SCID , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales CultivadasRESUMEN
BACKGROUND: Cancer-associated fibroblasts (CAFs) play a significant role in fueling prostate cancer (PCa) progression by interacting with tumor cells. A previous gene expression analysis revealed that CAFs up-regulate genes coding for voltage-gated cation channels, as compared to normal prostate fibroblasts (NPFs). In this study, we explored the impact of antiarrhythmic drugs, known cation channel inhibitors, on the activated state of CAFs and their interaction with PCa cells. METHODS: The effect of antiarrhythmic treatment on CAF activated phenotype was assessed in terms of cell morphology and fibroblast activation markers. CAF contractility and migration were evaluated by 3D gel collagen contraction and scratch assays, respectively. The ability of antiarrhythmics to impair CAF-PCa cell interplay was investigated in CAF-PCa cell co-cultures by assessing tumor cell growth and expression of epithelial-to-mesenchymal transition (EMT) markers. The effect on in vivo tumor growth was assessed by subcutaneously injecting PCa cells in SCID mice and intratumorally administering the medium of antiarrhythmic-treated CAFs or in co-injection experiments, where antiarrhythmic-treated CAFs were co-injected with PCa cells. RESULTS: Activated fibroblasts show increased membrane conductance for potassium, sodium and calcium, consistently with the mRNA and protein content analysis. Antiarrhythmics modulate the expression of fibroblast activation markers. Although to a variable extent, these drugs also reduce CAF motility and hinder their ability to remodel the extracellular matrix, for example by reducing MMP-2 release. Furthermore, conditioned medium and co-culture experiments showed that antiarrhythmics can, at least in part, reverse the protumor effects exerted by CAFs on PCa cell growth and plasticity, both in androgen-sensitive and castration-resistant cell lines. Consistently, the transcriptome of antiarrhythmic-treated CAFs resembles that of tumor-suppressive NPFs. In vivo experiments confirmed that the conditioned medium or the direct coinjection of antiarrhythmic-treated CAFs reduced the tumor growth rate of PCa xenografts. CONCLUSIONS: Collectively, such data suggest a new therapeutic strategy for PCa based on the repositioning of antiarrhythmic drugs with the aim of normalizing CAF phenotype and creating a less permissive tumor microenvironment.
Asunto(s)
Antiarrítmicos , Fibroblastos Asociados al Cáncer , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Ratones , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fenotipo , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto , Transición Epitelial-Mesenquimal/efectos de los fármacos , Movimiento Celular/efectos de los fármacosRESUMEN
PURPOSE: Epithelioid hemangioendothelioma (EHE) poses a therapeutic challenge due to limited efficacy of conventional chemotherapy in advanced cases, necessitating exploration of new treatment avenues and identification of novel aggressiveness biomarkers. This study aimed at i) utilizing an EHE patient-derived xenograft (PDX) model and its associated cell line to assess the efficacy of sirolimus and ii) analyzing two distinct patient cohorts to pinpoint circulating biomarkers of EHE aggressiveness. EXPERIMENTAL DESIGN: A PDX model and corresponding cell line were established from an advanced EHE patient, demonstrating consistency with the original tumor in terms of histomorphology, WWTR1::CAMTA1 fusion presence, and genomic and transcriptomic profiles. Two independent patient series were employed to investigate the association between Growth/Differentiation Factor 15 (GDF-15) serum levels and EHE aggressiveness. RESULTS: ELISA analyses on EHE cell culture medium and blood from EHE-carrying mice revealed the release of GDF-15 by EHE cells. Sirolimus exhibited markedly higher anti-tumor activity compared to doxorubicin, concurrently reducing GDF-15 expression/release both in vivo and in vitro. This reduction was attributed to the drug-induced inhibition of phosphorylation/activation of 4E-BP1 and subsequent downregulation of the GDF-15 transcription factors ATF4 and ATF5. Blood sample analyses from two independent patient series showed a significant correlation between GDF-15 and EHE aggressiveness. CONCLUSION: This study identifies GDF-15 as a novel biomarker of EHE aggressiveness and underscores the superior efficacy of sirolimus compared to doxorubicin in our experimental models. The observed inhibition of GDF-15 release by sirolimus suggests its potential as a biomarker for monitoring the drug's activity in patients.
RESUMEN
Studies in preclinical models have demonstrated the superior anti-tumor effect of CpG oligodeoxynucleotides (CpG-ODN) when administered at the tumor site rather than systemically. We evaluated the effect of aerosolized CpG-ODN on lung metastases in mice injected with immunogenic N202.1A mammary carcinoma cells or weakly immunogenic B16 melanoma cells. Upon reaching the bronchoalveolar space, aerosolized CpG-ODN activated a local immune response, as indicated by production of IL-12p40, IFN-γ and IL-1ß and by recruitment and maturation of DC cells in bronchoalveolar lavage fluid of mice. Treatment with aerosolized CpG-ODN induced an expansion of CD4+ cells in lung and was more efficacious than systemic i.p. administration against experimental lung metastases of immunogenic N202.1A mammary carcinoma cells, whereas only i.p. delivery of CpG-ODN provided anti-tumor activity, which correlated with NK cell expansion in the lung, against lung metastases of the poorly immunogenic B16 melanoma. The inefficacy of aerosol therapy to induce NK expansion was related to the presence of immunosuppressive macrophages in B16 tumor-bearing lungs, as mice depleted of these cells by clodronate treatment responded to aerosol CpG-ODN through expansion of the NK cell population and significantly reduced numbers of lung metastases. Our results indicate that tumor immunogenicity and the tumor-induced immunosuppressive environment are critical factors to the success of CpG therapy in the lung, and point to the value of routine sampling of the lung immune environment in defining an optimal immunotherapeutic strategy.
Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Oligodesoxirribonucleótidos/farmacología , Aerosoles , Animales , Linfocitos T CD4-Positivos/citología , Línea Celular Tumoral , Ácido Clodrónico/farmacología , Células Dendríticas/citología , Femenino , Humanos , Inmunosupresores/uso terapéutico , Interferón gamma/metabolismo , Subunidad p40 de la Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Trasplante de NeoplasiasRESUMEN
We reported that the clinical efficacy of dendritic cell-based vaccination is strongly associated with immunologic responses in relapsed B-cell non-Hodgkin lymphoma (B-NHL) patients. We have now investigated whether postvaccination antibodies from responders recognize novel shared NHL-restricted antigens. Immunohistochemistry and flow cytometry showed that they cross-react with allogeneic B-NHLs at significantly higher levels than their matched prevaccination samples or nonresponders' antibodies. Western blot analysis of DOHH-2 lymphoma proteome revealed a sharp band migrating at approximately 100 to 110 kDa only with postvaccine repertoires from responders. Mass spectrometry identified heat shock protein-105 (HSP105) in that molecular weight interval. Flow cytometry and immunohistochemistry disclosed HSP105 on the cell membrane and in the cytoplasm of B-NHL cell lines and 97 diagnostic specimens. A direct correlation between HSP105 expression and lymphoma aggressiveness was also apparent. Treatment of aggressive human B-NHL cell lines with an anti-HSP105 antibody had no direct effects on cell cycle or apoptosis but significantly reduced the tumor burden in xenotransplanted immunodeficient mice. In vivo antilymphoma activity of HSP105 engagement was associated with a significant local increase of Granzyme B(+) killer cells that very likely contributed to the tumor-restricted necrosis. Our study adds HSP105 to the list of nononcogenes that can be exploited as antilymphoma targets.
Asunto(s)
Anticuerpos/uso terapéutico , Proteínas del Choque Térmico HSP110/inmunología , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/terapia , Animales , Reacciones Antígeno-Anticuerpo , Línea Celular Tumoral , Estudios de Cohortes , Regulación Neoplásica de la Expresión Génica , Proteínas del Choque Térmico HSP110/genética , Humanos , Inmunohistoquímica , Linfoma no Hodgkin/genética , Ratones , Ratones SCID , Pruebas Serológicas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónAsunto(s)
Inhibidores Enzimáticos/farmacología , Glucuronidasa/antagonistas & inhibidores , Linfoma/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Animales , Glucuronidasa/metabolismo , Humanos , Linfoma/enzimología , Ratones , Proteínas de Neoplasias/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
This study exploited a novel patient-derived xenograft (PDX) of desmoplastic small round cell tumor (DSRCT), which reproduces histomorphological and molecular characteristics of the clinical tumor, to assess the activity of cytotoxic and targeted anticancer agents. Antitumor effect was moderate for doxorubicin, pazopanib and larotrectenib [maximum tumor volume inhibition (max TVI), 55-66%], while trabectedin had higher activity (max TVI, 82%). Vinorelbine, irinotecan and eribulin achieved nearly complete tumor growth inhibition (max TVI, 96-98%), although tumors regrew after the end of treatment. The combination of irinotecan with either eribulin or trabectedin resulted in complete responses, which were maintained until the end of the experiment for irinotecan plus trabectedin. Irinotecan-based combinations nearly abrogated the expression of proteins of the G2/M checkpoint, preventing cell entrance in mitosis, and induced apoptotic and necroptotic cell death. Consistently, irinotecan plus trabectedin resulted in reprogramming of DSCRT transcriptome, with downregulation of E2F targets, G2/M checkpoint and mitotic spindle gene sets. This study emphasizes the importance of patient-derived preclinical models to explore new treatments for DSRCT and fosters clinical investigation into the activity of irinotecan plus trabectedin.
Asunto(s)
Antineoplásicos , Tumor Desmoplásico de Células Pequeñas Redondas , Humanos , Trabectedina/uso terapéutico , Trabectedina/farmacología , Irinotecán/farmacología , Irinotecán/uso terapéutico , Tumor Desmoplásico de Células Pequeñas Redondas/tratamiento farmacológico , Tumor Desmoplásico de Células Pequeñas Redondas/patología , Xenoinjertos , Antineoplásicos/uso terapéuticoRESUMEN
Current chemotherapy regimens have unsatisfactory results in most advanced solid tumors. It is therefore imperative to devise novel therapeutic strategies and to optimize selection of patients, identifying early those who could benefit from available treatments. Mouse models are the most valuable tool for preclinical evaluation of novel therapeutic strategies in cancer and, among them, patient-derived xenografts models (PDX) have made a recent comeback in popularity. These models, obtained by direct implants of tissue fragments in immunocompromised mice, have great potential in drug development studies because they faithfully reproduce the patient's original tumor for both immunohistochemical markers and genetic alterations as well as in terms of response to common therapeutics They also maintain the original tumor heterogeneity, allowing studies of specific cellular subpopulations, including their modulation after drug treatment. Moreover PDXs maintain at least some aspects of the human microenvironment for weeks with the complete substitution with murine stroma occurring only after 2-3 passages in mouse and represent therefore a promising model for studies of tumor-microenvironment interaction. This review summarizes our present knowledge on mouse preclinical cancer models, with a particular attention on patient-derived xenografts of non small cell lung cancer and their relevance for preclinical and biological studies.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Células Madre Neoplásicas/patología , Medicina de Precisión/métodos , Animales , Humanos , Ratones , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The identification of lung tumor-initiating cells and associated markers may be useful for optimization of therapeutic approaches and for predictive and prognostic information in lung cancer patients. CD133, a surface glycoprotein linked to organ-specific stem cells, was described as a marker of cancer-initiating cells in different tumor types. Here, we report that a CD133+, epithelial-specific antigen-positive (CD133+ESA+) population is increased in primary nonsmall cell lung cancer (NSCLC) compared with normal lung tissue and has higher tumorigenic potential in SCID mice and expression of genes involved in stemness, adhesion, motility, and drug efflux than the CD133(-) counterpart. Cisplatin treatment of lung cancer cells in vitro resulted in enrichment of CD133+ fraction both after acute cytotoxic exposure and in cells with stable cisplatin-resistant phenotype. Subpopulations of CD133+ABCG2+ and CD133+CXCR4+ cells were spared by in vivo cisplatin treatment of lung tumor xenografts established from primary tumors. A tendency toward shorter progression-free survival was observed in CD133+ NSCLC patients treated with platinum-containing regimens. Our results indicate that chemoresistant populations with highly tumorigenic and stem-like features are present in lung tumors. The molecular features of these cells may provide the rationale for more specific therapeutic targeting and the definition of predictive factors in clinical management of this lethal disease.
Asunto(s)
Antígenos CD/metabolismo , Cisplatino/farmacología , Glicoproteínas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Péptidos/metabolismo , Antígeno AC133 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptores CXCR4/metabolismo , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Heparanase is an endoglycosidase that specifically cleaves heparan sulphate side chains of heparan sulphate proteoglycans, activity that is strongly implicated in cell migration and invasion associated with tumour metastasis, angiogenesis and inflammation. Heparanase up-regulation was documented in an increasing number of human carcinomas, correlating with reduced post-operative survival rate and enhanced tumour angiogenesis. Expression and significance of heparanase in human sarcomas has not been so far reported. Here, we applied the Ewing's sarcoma cell line TC71 and demonstrated a potent inhibition of cell invasion in vitro and tumour xenograft growth in vivo upon treatment with a specific inhibitor of heparanase enzymatic activity (compound SST0001, non-anticoagulant N-acetylated, glycol split heparin). Next, we examined heparanase expression and cellular localization by immunostaining of a cohort of 69 patients diagnosed with Ewing's sarcoma. Heparanase staining was noted in all patients. Notably, heparanase staining intensity correlated with increased tumour size (P = 0.04) and with patients' age (P = 0.03), two prognostic factors associated with a worse outcome. Our study indicates that heparanase expression is induced in Ewing's sarcoma and associates with poor prognosis. Moreover, it encourages the inclusion of heparanase inhibitors (i.e. SST0001) in newly developed therapeutic modalities directed against Ewing's sarcoma and likely other malignancies.
Asunto(s)
Glucuronidasa/metabolismo , Sarcoma de Ewing/enzimología , Adulto , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/farmacología , Glucuronidasa/antagonistas & inhibidores , Heparina/análogos & derivados , Heparina/farmacología , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica , Sarcoma de Ewing/patología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Resultado del TratamientoRESUMEN
BACKGROUND: Synovial sarcoma (SS) is an aggressive soft tissue tumor with limited therapeutic options in advanced stage. SS18-SSX fusion oncogenes, which are the hallmarks of SS, cause epigenetic rewiring involving histone deacetylases (HDACs). Promising preclinical studies supporting HDAC targeting for SS treatment were not reflected in clinical trials with HDAC inhibitor (HDACi) monotherapies. We investigated pathways implicated in SS cell response to HDACi to identify vulnerabilities exploitable in combination treatments and improve the therapeutic efficacy of HDACi-based regimens. METHODS: Antiproliferative and proapoptotic effects of the HDACi SAHA and FK228 were examined in SS cell lines in parallel with biochemical and molecular analyses to bring out cytoprotective pathways. Treatments combining HDACi with drugs targeting HDACi-activated prosurvival pathways were tested in functional assays in vitro and in a SS orthotopic xenograft model. Molecular mechanisms underlying synergisms were investigated in SS cells through pharmacological and gene silencing approaches and validated by qRT-PCR and Western blotting. RESULTS: SS cell response to HDACi was consistently characterized by activation of a cytoprotective and auto-sustaining axis involving ERKs, EGR1, and the ß-endoglycosidase heparanase, a well recognized pleiotropic player in tumorigenesis and disease progression. HDAC inhibition was shown to upregulate heparanase by inducing expression of the positive regulator EGR1 and by hampering negative regulation by p53 through its acetylation. Interception of HDACi-induced ERK-EGR1-heparanase pathway by cell co-treatment with a MEK inhibitor (trametinib) or a heparanase inhibitor (SST0001/roneparstat) enhanced antiproliferative and pro-apoptotic effects. HDAC and heparanase inhibitors had opposite effects on histone acetylation and nuclear heparanase levels. The combination of SAHA with SST0001 prevented the upregulation of ERK-EGR1-heparanase induced by the HDACi and promoted caspase-dependent cell death. In vivo, the combined treatment with SAHA and SST0001 potentiated the antitumor efficacy against the CME-1 orthotopic SS model as compared to single agent administration. CONCLUSIONS: The present study provides preclinical rationale and mechanistic insights into drug combinatory strategies based on the use of ERK pathway and heparanase inhibitors to improve the efficacy of HDACi-based antitumor therapies in SS. The involvement of classes of agents already clinically available, or under clinical evaluation, indicates the transferability potential of the proposed approaches.
Asunto(s)
Glucuronidasa/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Sarcoma Sinovial/tratamiento farmacológico , Animales , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Regulación hacia ArribaRESUMEN
Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Here, we pursued a combinatorial therapeutic approach to enhance the activity of selinexor, the first-in-class XPO1 inhibitor, by miR-34a ectopic expression in human TNBC experimental models. Anti-proliferative activity induced by selinexor and miR-34a expression, singly and in combination, was evaluated by MTS assay and cell counting. The effect of treatments on survivin and apoptosis-related proteins was assessed by western blotting and ELISA. The antitumor and toxic effects of individual and combined treatments were evaluated on TNBC orthotopic xenografts in SCID mice. Selinexor consistently showed anti-proliferative activity, although to a variable extent, in the different TNBC cell lines and caused the impairment of survivin expression and intracellular distribution, accompanied by apoptosis induction. Consistent with in vitro data, the XPO1 inhibitor variably affected the growth of TNBC orthotopic xenografts. miR-34a cooperated with selinexor to reduce survivin expression and improved its anti-proliferative activity in TNBC cells. Most importantly, miR-34a expression markedly enhanced selinexor antitumor activity in the less sensitive TNBC xenograft model, in absence of toxicity. Our data form a solid foundation for promoting the use of a miR-34a-based approach to improve the therapeutic efficacy of selinexor in TNBC patients.
RESUMEN
BACKGROUND: Dedifferentiated liposarcoma (DDLPS), a tumor that lacks effective treatment strategies and is associated with poor outcomes, expresses amplified MDM2 in the presence of wild-type p53. MDM2 ubiquitination of p53 facilitates its XPO1-mediated nuclear export, thus limiting p53 tumor suppressor functions. Consequently, nuclear export is a rational target in DDLPS. We directly compared the antitumor activity of the first-in class XPO1 inhibitor selinexor and doxorubicin, the standard front-line therapy in sarcomas, in DDLPS patient-derived xenografts (PDXs) and primary cell lines. METHODS: Drug activity was assessed in three PDXs (and two corresponding cell lines) established from the dedifferentiated component of primary untreated retroperitoneal DDLPS with myogenic (N = 2) and rhabdomyoblastic (N = 1) differentiation from patients who underwent surgery. These models were marked by amplification of MDM2, CDK4 and HMGA2 genes. RESULTS: Selinexor was moderately active in the three PDXs but achieved greater tumor response compared to doxorubicin (maximum tumor volume inhibition: 46-80 % vs. 37-60 %). The PDX harboring rhabdomyoblastic dedifferentiation showed the highest sensitivity to both agents. PDX response to selinexor and doxorubicin was not associated with the extent of MDM2 and CDK4 gene amplification. Interestingly, the most chemosensitive PDX model showed the lowest extent of HMGA2 amplification. Selinexor was also more efficient than doxorubicinin in inducing an apoptotic response in PDXs and cell lines. Consistently, an increased nuclear accumulation of p53 was seen in all selinexor-treated models. In addition, a time-dependent decrease of survivin expression, with an almost complete abrogation of the cytoplasmic anti-apoptotic pool of this protein, was observed as a consequence of the decreased acetylation/activation of STAT3 and the increased ubiquitination of nuclear survivin. CONCLUSIONS: Selinexor showed a moderate antitumor activity in three DDLPS PDXs, which was, however, consistently higher than doxorubicin across all different models regardless the extent of MDM2 amplification and the histological differentiation. The depletion of survivin protein seems to significantly contribute to the induction of apoptosis through which selinexor exerts its antitumor activity.
Asunto(s)
Doxorrubicina/farmacología , Hidrazinas/farmacología , Liposarcoma/tratamiento farmacológico , Survivin/metabolismo , Triazoles/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Desdiferenciación Celular/fisiología , Núcleo Celular/metabolismo , Regulación hacia Abajo , Humanos , Liposarcoma/diagnóstico por imagen , Liposarcoma/metabolismo , Liposarcoma/patología , Masculino , Ratones , Ratones Desnudos , Distribución Aleatoria , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Nano- and microsized extracellular vesicles (EVs) are naturally occurring cargo-bearing packages of regulatory macromolecules, and recent studies are increasingly showing that EVs are responsible for physiological intercellular communication. Nanoparticles encapsulating anti-tumor theranostics represent an attractive "exosome-interfering" strategy for cancer therapy. Methods: Herein, by labeling plasma-derived EVs with indocyanine green (ICG) and following their biodistribution by in vivo and ex vivo imaging, we demonstrate the existence of nanoparticles with a highly selective cancer tropism in the blood of colorectal cancer (CRC) patients but not in that of healthy volunteers. Results: In CRC patient-derived xenograft (PDX) mouse models, we show that transplanted EVs recognize tumors from the cognate nanoparticle-generating individual, suggesting the theranostic potential of autologous EVs encapsulating tumor-interfering molecules. In large canine breeds bearing spontaneous malignant skin and breast tumors, the same autologous EV transplantation protocol shows comparable safety and efficacy profiles. Conclusions: Our data show the existence of an untapped resource of intercellular communication present in the blood of cancer patients, which represents an efficient and highly biocompatible way to deliver molecules directly to the tumor with great precision. The novel EV-interfering approach proposed by our study may become a new research direction in the complex interplay of modern personalized cancer therapy.
Asunto(s)
Neoplasias de la Mama/terapia , Neoplasias Colorrectales/terapia , Vesículas Extracelulares/trasplante , Neoplasias Hepáticas/terapia , Animales , Apoptosis , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Proliferación Celular , Neoplasias Colorrectales/patología , Perros , Femenino , Humanos , Neoplasias Hepáticas/secundario , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Distribución Tisular , Trasplante Autólogo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The question of the serum HER2 extracellular domain (HER2/ECD) measurement for prediction of response to the anti-HER2 antibody Trastuzumab is still an open and current matter of clinical debate. To elucidate the involvement of shed HER2/ECD in HER2-driven tumor progression and in guiding therapy of individual patients, we examined biological effects exerted by elevated HER2/ECD in cancer growth and in response to Trastuzumab. To this purpose SKOV3 tumor cells were stably transfected to release a recombinant HER2/ECD molecule (rECD). Transfectants releasing high levels of 110-kDa rECD, identical in size to native HER2/ECD (nECD), grew significantly slower than did controls, which constitutively released only basal levels of nECD. While transmembrane HER2 and HER1 were expressed at equal levels by both controls and transfected cells, activation of these molecules and of downstream ERK2 and Akt was significantly reduced only in rECD transfectants. Surface plasmon resonance analysis revealed heterodimerization of the rECD with HER1, -2, and -3. In cell growth bioassays in vitro, shed HER2 significantly blocked HER2-driven tumor cell proliferation. In mice, high levels of circulating rECD significantly impaired HER2-driven SKOV3 tumor growth but not that of HER2-negative tumor cells. In vitro and in mice, Trastuzumab significantly inhibited tumor growth due to the rECD-facilitated accumulation of the antibody on tumor cells. Globally our findings sustain the biological relevance of elevated HER2/ECD levels in the outcome of HER2-disease and in the susceptibility to Trastuzumab-based therapy.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Animales , Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Receptor ErbB-2/genética , Transducción de Señal/fisiología , TrastuzumabRESUMEN
The development of novel therapies or the improvement of currently used approaches to treat prostate cancer (PCa), the most frequently diagnosed male tumor in developed countries, is an urgent need. In this regard, the functional characterization of microRNAs, molecules shown to regulate a number of cancer-related pathways, is instrumental to their possible clinical exploitation. Here, we demonstrate the tumor-suppressive role of the so far uncharacterized miR-1272, which we found to be significantly down-modulated in PCa clinical specimens compared to normal tissues. Through a gain-of-function approach using miRNA mimics, we showed that miR-1272 supplementation in two PCa cell models (DU145 and 22Rv1) reverted the mesenchymal phenotype by affecting migratory and invasive properties, and reduced cell growth in vitro and in vivo in SCID mice. Additionally, by targeting HIP1 encoding the endocytic protein HIP1, miR-1272 balanced EGFR membrane turnover, thus affecting the downstream AKT/ERK pathways, and, ultimately, increasing PCa cell response to ionizing radiation. Overall, our results show that miR-1272 reconstitution can affect several tumor traits, thus suggesting this approach as a potential novel therapeutic strategy to be pursued for PCa, with the multiple aim of reducing tumor growth, enhancing response to radiotherapy and limiting metastatic dissemination.
Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , MicroARNs/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Xenoinjertos , Humanos , Masculino , Ratones , Ratones SCID , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , TransfecciónRESUMEN
Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is the most commonly mutated gene in prostate cancer (PCa). Recent evidence reports a role of SPOP in DNA damage response (DDR), indicating a possible impact of SPOP deregulation on PCa radiosensitivity. This study aimed to define the role of SPOP deregulation (by gene mutation or knockdown) as a radiosensitizing factor in PCa preclinical models. To express WT or mutant (Y87N, K129E and F133V) SPOP, DU145 and PC-3 cells were transfected with pMCV6 vectors. Sensitivity profiles were assessed using clonogenic assay and immunofluorescent staining of γH2AX and RAD51 foci. SCID xenografts were treated with 5 Gy single dose irradiation using an image-guided small animal irradiator. siRNA and miRNA mimics were used to silence SPOP or express the SPOP negative regulator miR-145, respectively. SPOP deregulation, by either gene mutation or knockdown, consistently enhanced the radiation response of PCa models by impairing DDR, as indicated by transcriptome analysis and functionally confirmed by decreased RAD51 foci. SPOP silencing also resulted in a significant downregulation of RAD51 and CHK1 expression, consistent with the impairment of homologous recombination. Our results indicate that SPOP deregulation plays a radiosensitizing role in PCa by impairing DDR via downregulation of RAD51 and CHK1.