Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 226(1): 119-127, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34653245

RESUMEN

BACKGROUND: OVX836 is a recombinant protein vaccine targeting the highly conserved influenza nucleoprotein (NP), which could confer broad-spectrum protection against this disease. METHODS: A randomized, placebo-controlled, double-blind, dose-escalating, single- center, first-in-human study was conducted in 36 healthy adults aged 18-49 years. Twelve subjects per cohort (9 vaccine and 3 placebo) received 2 OVX836 intramuscular administrations on days 1 and 28 at the dose level of 30 µg, 90 µg, or 180 µg. Safety and immunogenicity were assessed after each vaccination and for 150 days in total. RESULTS: OVX836 was safe and well tolerated at all dose levels, with no difference in solicited local and systemic symptoms, and unsolicited adverse events between the first and second administration, or between dose levels. All subjects presented pre-existing NP-specific immunity at baseline. OVX836 induced a significant increase in NP-specific interferon-gamma T cells and anti-NP immunoglobulin G at all dose levels after the first vaccination. The second vaccination did not further increase the response. There was a trend for a dose effect in the immune response. CONCLUSIONS: The safety and reactogenicity profile, as well as the humoral and cellular immune responses, encourage further evaluation of OVX836 in a larger Phase 2a study.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Adulto , Anticuerpos Antivirales , Método Doble Ciego , Humanos , Inmunogenicidad Vacunal , Gripe Humana/prevención & control , Nucleoproteínas , Vacunación/métodos , Vacunas Sintéticas
2.
Lancet Infect Dis ; 23(12): 1360-1369, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37517422

RESUMEN

BACKGROUND: OVX836, a recombinant vaccine containing the nucleoprotein of the influenza A virus A/WSN/1933 (H1N1) and the oligomerisation domain OVX313, has displayed a good safety profile and elicited dose-dependent humoral and cellular immune responses at 90 µg or 180 µg (intramuscularly) in previous clinical trials. The aim of this study was to explore higher doses, since no maximum tolerated dose had been reached. METHODS: In this phase 2a, randomised, double-blind, placebo-controlled study, we recruited 137 healthy adults aged 18-55 years in a single centre in Belgium. Participants were randomly assigned (interactive web response system; block size=4) using SAS (version 9.4) to receive one single intramuscular administration of OVX836 influenza vaccine at three doses (180 µg [n=33], 300 µg [n=35], and 480 µg [n=36]) or placebo (n=33). The two primary endpoints were the safety and the cell-mediated immune response to OVX836 at the three doses in terms of change of nucleoprotein-specific IFNγ spot forming cell (SFC) frequencies in the peripheral blood mononuclear cell (PBMC) population, measured by IFNγ ELISpot, at day 8 versus pre-injection baseline (day 1). The population used for the safety analysis is the modified intention-to-treat cohort. The population used for the immunogenicity analysis is the per-protocol cohort. This trial is registered with ClinicalTrials.gov, NCT05060887, and EudraCT, 2021-002535-39. FINDINGS: Participants were recruited between Nov 15, 2021, and Feb 1, 2022. OVX836 had a favourable safety profile up to 480 µg without reaching the maximum tolerated dose, and showed a good safety profile at all doses with mild local and systemic reactogenicity. 7 days after vaccination, although no significant differences were observed between the doses, OVX836 increased the frequency of nucleoprotein-specific IFNγ SFCs per million PBMCs from days 1 to 8 (primary endpoint): by 124 SFCs per 106 PMBCs (95% CI 67 to 180; p=0·002) at 180 µg; by 202 SFCs per 106 PMBCs (95% CI 138 to 267; p<0·0001) at 300 µg; by 223 SFCs per 106 PMBCs (95% CI 147 to 299; p<0·0001) at 480 µg; and decreased by 1 SFCs per 106 PMBCs (95% CI -24 to 22] in the placebo group (Kruskal-Wallis test p<0·0001 followed by Mann-Whitney's tests; per-protocol cohort). Dose-dependent and polyfunctional nucleoprotein-specific CD4 T-cell responses were observed, and CD8 T-cell responses were elicited at 300 µg and 480 µg (secondary endpoints). INTERPRETATION: OVX836 appears to be a safe and well tolerated candidate vaccine that elicits humoral and cellular nucleoprotein-specific immune responses (including CD8 T cells at the highest dose levels) and showed a preliminary signal of protection against influenza. Therefore, OVX836 is a promising vaccine candidate for universal influenza A prevention, that warrants further trials. FUNDING: OSIVAX, Bpifrance, Wallonia Region, and the EUs Horizon 2020 Research and Innovation Program.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adulto , Humanos , Anticuerpos Antivirales , Método Doble Ciego , Inmunogenicidad Vacunal , Vacunas contra la Influenza/efectos adversos , Gripe Humana/prevención & control , Leucocitos Mononucleares , Vacunación , Adolescente , Adulto Joven , Persona de Mediana Edad
3.
Front Immunol ; 13: 852904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464450

RESUMEN

OVX836 is a recombinant protein-based vaccine targeting the highly conserved influenza nucleoprotein (NP), which aims to confer a broad-spectrum protection against influenza. In a Phase 1 study, OVX836, administered intramuscularly, has been found safe and immunogenic. The 90µg and 180µg dose levels were selected to be further evaluated in this randomized, monocenter, reference-controlled (Influvac Tetra™: quadrivalent seasonal influenza subunit vaccine), parallel group, double-blind, Phase 2a study in 300 healthy volunteers, aged 18-65 years, during the 2019/2020 flu season. Safety, influenza-like illness episodes (ILI; based on the Flu-PRO® questionnaire) and immunogenicity were assessed up to 180 days post-vaccination. OVX836 was safe and presented a reactogenicity profile similar to Influvac Tetra. It induced a significant increase in terms of NP-specific interferon-gamma (IFNγ) spot forming cells (SFCs), NP-specific CD4+ T-cells (essentially polyfunctional cells) and anti-NP IgG responses. OVX836 was superior to Influvac Tetra for all immunological parameters related to NP, and the 180µg dose was significantly superior to the 90µg dose for SFCs and CD4+ T-cells expressing IFNγ. Both the CD4+ T-cell and the anti-NP IgG responses persisted up to Day 180. An efficacy signal was observed with OVX836 at 180µg through reduction of ILI episodes occurring during the flu season as of 14 days post-vaccination. In conclusion, these results encourage further clinical evaluation of OVX836 in order to confirm the signal of efficacy on ILIs and/or laboratory-confirmed influenza cases. NCT04192500 (https://clinicaltrials.gov/ct2/show/study/NCT04192500).


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Adolescente , Adulto , Anciano , Método Doble Ciego , Humanos , Inmunoglobulina G , Vacunas contra la Influenza/efectos adversos , Gripe Humana/prevención & control , Interferón gamma , Persona de Mediana Edad , Nucleoproteínas , Vacunas Combinadas , Vacunas Sintéticas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA