Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Biol Sci ; 280(1759): 20130184, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23536596

RESUMEN

Oceanic dispersal has emerged as an important factor contributing to biogeographic patterns in numerous taxa. Chameleons are a clear example of this, as they are primarily found in Africa and Madagascar, but the age of the family is post-Gondwanan break-up. A Malagasy origin for the family has been suggested, yet this hypothesis has not been tested using modern biogeographic methods with a dated phylogeny. To examine competing hypotheses of African and Malagasy origins, we generated a dated phylogeny using between six and 13 genetic markers, for up to 174 taxa representing greater than 90 per cent of all named species. Using three different ancestral-state reconstruction methods (Bayesian and likelihood approaches), we show that the family most probably originated in Africa, with two separate oceanic dispersals to Madagascar during the Palaeocene and the Oligocene, when prevailing oceanic currents would have favoured eastward dispersal. Diversification of genus-level clades took place in the Eocene, and species-level diversification occurred primarily in the Oligocene. Plio-Pleistocene speciation is rare, resulting in a phylogeny dominated by palaeo-endemic species. We suggest that contraction and fragmentation of the Pan-African forest coupled to an increase in open habitats (savannah, grassland, heathland), since the Oligocene played a key role in diversification of this group through vicariance.


Asunto(s)
Lagartos/genética , Filogenia , África , Animales , Teorema de Bayes , Núcleo Celular/genética , Ambiente , Evolución Molecular , Fósiles , Marcadores Genéticos , Geografía , Funciones de Verosimilitud , Madagascar , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Homología de Secuencia
2.
Mol Phylogenet Evol ; 65(3): 974-91, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22982760

RESUMEN

Recently, phylogenetics has expanded to routinely include estimation of clade ages in addition to their relationships. Various dating methods have been used, but their relative performance remains understudied. Here, we generate and assemble an extensive phylogenomic data set for squamate reptiles (lizards and snakes) and evaluate two widely used dating methods, penalized likelihood in r8s (r8s-PL) and Bayesian estimation with uncorrelated relaxed rates among lineages (BEAST). We obtained sequence data from 25 nuclear loci (∼500-1,000 bp per gene; 19,020bp total) for 64 squamate species and nine outgroup taxa, estimated the phylogeny, and estimated divergence dates using 14 fossil calibrations. We then evaluated how well each method approximated these dates using random subsets of the nuclear loci (2, 5, 10, 15, and 20; replicated 10 times each), and using ∼1 kb of the mitochondrial ND2 gene. We find that estimates from r8s-PL based on 2, 5, or 10 loci can differ considerably from those based on 25 loci (mean absolute value of differences between 2-locus and 25-locus estimates were 9.0 Myr). Estimates from BEAST are somewhat more consistent given limited sampling of loci (mean absolute value of differences between 2 and 25-locus estimates were 5.0 Myr). Most strikingly, age estimates using r8s-PL for ND2 were ∼68-82 Myr older (mean=73.1) than those using 25 nuclear loci with r8s-PL. These results show that dates from r8s-PL with a limited number of loci (and especially mitochondrial data) can differ considerably from estimates derived from a large number of nuclear loci, whereas estimates from BEAST derived from fewer nuclear loci or mitochondrial data alone can be surprisingly similar to those from many nuclear loci. However, estimates from BEAST using relatively few loci and mitochondrial data could still show substantial deviations from the full data set (>50 Myr), suggesting the benefits of sampling many nuclear loci. Finally, we found that confidence intervals on ages from BEAST were not significantly different when sampling 2 vs. 25 loci, suggesting that adding loci decreased errors but did not increase confidence in those estimates.


Asunto(s)
Evolución Molecular , Lagartos/clasificación , Modelos Genéticos , Filogenia , Serpientes/clasificación , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Fósiles , Funciones de Verosimilitud , Lagartos/genética , Análisis de Secuencia de ADN , Serpientes/genética
3.
Biol Lett ; 8(6): 1043-6, 2012 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22993238

RESUMEN

Squamate reptiles (lizards and snakes) are one of the most diverse groups of terrestrial vertebrates. Recent molecular analyses have suggested a very different squamate phylogeny relative to morphological hypotheses, but many aspects remain uncertain from molecular data. Here, we analyse higher-level squamate phylogeny with a molecular dataset of unprecedented size, including 161 squamate species for up to 44 nuclear genes each (33 717 base pairs), using both concatenated and species-tree methods for the first time. Our results strongly resolve most squamate relationships and reveal some surprising results. In contrast to most other recent studies, we find that dibamids and gekkotans are together the sister group to all other squamates. Remarkably, we find that the distinctive scolecophidians (blind snakes) are paraphyletic with respect to other snakes, suggesting that snakes were primitively burrowers and subsequently re-invaded surface habitats. Finally, we find that some clades remain poorly supported, despite our extensive data. Our analyses show that weakly supported clades are associated with relatively short branches for which individual genes often show conflicting relationships. These latter results have important implications for all studies that attempt to resolve phylogenies with large-scale phylogenomic datasets.


Asunto(s)
Lagartos/genética , Filogenia , Serpientes/genética , Animales , Secuencia de Bases , Teorema de Bayes , Genes/genética , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
Proc Biol Sci ; 278(1718): 2568-74, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21270029

RESUMEN

Intercontinental dispersal via land bridge connections has been important in the biogeographic history of many Holarctic plant and animal groups. Likewise, some groups appear to have accomplished trans-oceanic dispersal via rafting. Dibamid lizards are a clade of poorly known fossorial, essentially limbless species traditionally split into two geographically disjunct genera: Dibamus comprises approximately 20 Southeast Asian species, many of which have very limited geographical distributions, and the monotypic genus Anelytropsis occupies a small area of northeastern Mexico. Although no formal phylogeny of the group exists, a sister-taxon relationship between the two genera has been assumed based on biogeographic considerations. We used DNA sequence data from one mitochondrial and six nuclear protein-coding genes to construct a phylogeny of Dibamidae and to estimate divergence times within the group. Surprisingly, sampled Dibamus species form two deeply divergent, morphologically conserved and geographically concordant clades, one of which is the sister taxon of Anelytropsis papillosus. Our analyses indicate Palaearctic to Nearctic Beringian dispersal in the Late Palaeocene to Eocene. Alternatively, a trans-Pacific rafting scenario would extend the upper limit on dispersal to the Late Cretaceous. Either scenario constitutes a remarkable long-distance dispersal in what would seem an unlikely candidate.


Asunto(s)
Migración Animal , Lagartos/genética , Lagartos/fisiología , Filogenia , Alaska , Animales , Asia Sudoriental , ADN Mitocondrial/genética , Evolución Molecular , Lagartos/clasificación , México , Proteínas Nucleares/genética , Filogeografía , Análisis de Secuencia de ADN , Siberia , Especificidad de la Especie
5.
Mol Phylogenet Evol ; 61(2): 363-80, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21787873

RESUMEN

Iguanian lizards form a diverse clade whose members have been the focus of many comparative studies of ecology, behavior, and evolution. Despite the importance of phylogeny to such studies, interrelationships among many iguanian clades remain uncertain. Within the Old World clade Acrodonta, Agamidae is sometimes found to be paraphyletic with respect to Chamaeleonidae, and recent molecular studies have produced conflicting results for many major clades. Within the largely New World clade Pleurodonta, relationships among the 12 currently recognized major subclades (mostly ranked as families) have been largely unresolved or poorly supported in previous studies. To clarify iguanian evolutionary history, we first infer phylogenies using concatenated maximum-likelihood (ML) and Bayesian analyses of DNA sequence data from 29 nuclear protein-coding genes for 47 iguanian and 29 outgroup taxa. We then estimate a relaxed-clock Bayesian chronogram for iguanians using BEAST. All three methods produce identical topologies. Within Acrodonta, we find strong support for monophyly of Agamidae with respect to Chamaeleonidae, and for almost all relationships within agamids. Within Pleurodonta, we find strong Bayesian support for almost all relationships, and strong ML support for some interfamilial relationships and for monophyly of almost all families (excepting Polychrotidae). Our phylogenetic results suggest a non-traditional biogeographic scenario in which pleurodonts originated in the Northern Hemisphere and subsequently spread southward into South America. The pleurodont portion of the tree is characterized by several very short, deep branches, raising the possibility of deep coalescences that may confound concatenated analyses. We therefore also use 27 of these genes to implement a coalescent-based species-tree approach for pleurodonts. Although this analysis strongly supports monophyly of the pleurodont families, interfamilial relationships are generally different from those in the concatenated tree, and support is uniformly poor. However, a species-tree analysis using only the seven most variable loci yields higher support and more congruence with the concatenated tree. This suggests that low support in the 27-gene species-tree analysis may be an artifact of the many loci that are uninformative for very short branches. This may be a general problem for the application of species-tree methods to rapid radiations, even with phylogenomic data sets. Finally, we correct the non-monophyly of Polychrotidae by recognizing the pleurodont genus Anolis (sensu lato) as a separate family (Dactyloidae), and we correct the non-monophyly of the agamid genus Physignathus by resurrection of the genus Istiurus for the former Physignathus lesueurii.


Asunto(s)
Evolución Molecular , Lagartos/genética , Filogenia , Animales , Teorema de Bayes , Núcleo Celular/genética , Funciones de Verosimilitud , Lagartos/clasificación , Modelos Genéticos , Filogeografía , Análisis de Secuencia de ADN
6.
Syst Biol ; 59(6): 674-88, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20930035

RESUMEN

Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.


Asunto(s)
Fósiles , Reptiles/clasificación , Reptiles/genética , Serpientes/clasificación , Serpientes/genética , Animales , Genómica , Filogenia
7.
Biol Lett ; 7(2): 225-8, 2011 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20826471

RESUMEN

Madagascar and the Seychelles are Gondwanan remnants currently isolated in the Indian Ocean. In the Late Cretaceous, these islands were joined with India to form the Indigascar landmass, which itself then split into its three component parts around the start of the Tertiary. This history is reflected in the biota of the Seychelles, which appears to contain examples of both vicariance- and dispersal-mediated divergence from Malagasy or Indian sister taxa. One lineage for which this has been assumed but never thoroughly tested is the Seychellean tiger chameleon, a species assigned to the otherwise Madagascar-endemic genus Calumma. We present a multi-locus phylogenetic study of chameleons, and find that the Seychellean species is actually the sister taxon of a southern African clade and requires accomodation in its own genus as Archaius tigris. Divergence dating and biogeographic analyses indicate an origin by transoceanic dispersal from Africa to the Seychelles in the Eocene-Oligocene, providing, to our knowledge, the first such well-documented example and supporting novel palaeocurrent reconstructions.


Asunto(s)
Migración Animal , Lagartos/fisiología , África , Animales , Geografía , Lagartos/genética , Datos de Secuencia Molecular , Filogenia , Dinámica Poblacional , Análisis de Secuencia de ADN , Seychelles , Movimientos del Agua
8.
Syst Biol ; 58(6): 641-56, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20525615

RESUMEN

Madagascar's flora and fauna are remarkable both for their diversity and supraspecific endemism. Moreover, many taxa contain large numbers of species with limited distributions. Several hypotheses have been proposed to explain this high level of microendemism, including 1) riverine barrier, 2) mountain refuge, and 3) watershed contraction hypotheses, the latter 2 of which center on fragmentation due to climatic shifts associated with Pliocene/Pleistocene glaciations. The Malagasy leaf chameleon genus Brookesia is a speciose group with a high proportion of microendemic taxa, thus making it an excellent candidate to test these vicariance scenarios. We used mitochondrial and nuclear sequence data to construct a Brookesia phylogeny, and temporal concordance with Pliocene/Pleistocene speciation scenarios was tested by estimating divergence dates using a relaxed-clock Bayesian method. We strongly reject a role for Pliocene/Pleistocene climatic fluctuations in species-level diversification of Brookesia. We also used simulations to test the spatial predictions of the watershed contraction model in a phylogenetic context, independent of its temporal component, and found no statistical support for this model. The riverine barrier model is likewise a qualitatively poor fit to our data, but some relationships support a more ancient mountain refuge effect. We assessed support for the 3 hypotheses in a nonphylogenetic context by examining altitude and species richness and found a significant positive correlation between these variables. This is consistent with a mountain refuge effect but does not support the watershed contraction or riverine barrier models. Finally, we find repeated higher level east-west divergence patterns 1) between the 2 sister clades comprising the Brookesia minima group and 2) within the clade of larger leaf chameleons, which shows a basal divergence between western and eastern/northern sister clades. Our results highlight the central role of phylogeny in any meaningful tests of species-level diversification theories.


Asunto(s)
Biodiversidad , Clima , Especiación Genética , Geografía , Lagartos/genética , Filogenia , Altitud , Animales , Secuencia de Bases , Teorema de Bayes , Simulación por Computador , ADN Mitocondrial/genética , Demografía , Evolución Molecular , Funciones de Verosimilitud , Madagascar , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
9.
PLoS One ; 10(3): e0118199, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803280

RESUMEN

Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement.


Asunto(s)
Fósiles , Lagartos/clasificación , Serpientes/clasificación , Animales , Evolución Biológica , Bases de Datos Factuales , Bases de Datos Genéticas , Lagartos/genética , Filogenia , Serpientes/genética
10.
Proc Biol Sci ; 271(1551): 1967-75, 2004 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-15347522

RESUMEN

The phylogenetic associations among 13 currently recognized African leaf chameleon species were investigated by making use of mitochondrial and nuclear DNA sequence data (44 taxa and 4145 characters). The gene tree indicates two divergent clades within Rhampholeon; this finding is congruent with previous morphological suggestions. The first clade (I) comprises three taxa (R. kerstenii, R. brevicaudatus and R. brachyurus) and is widely distributed in lowland forest and or non-forest biomes. The second clade (II) comprises the remaining Rhampholeon species and can be subdivided into three subclades. By contrast, most taxa belonging to clade II are confined to relict montane forest biotopes. Based on geographical, morphological and molecular evidence, it is suggested that the taxonomy of Rhampholeon be revised to include two genera (Rieppeleon and Rhampholeon) and three subgenera (Rhampholeon, Bicuspis and Rhinodigitum). There is a close correlation between geographical distribution and phylogenetic relatedness among Rhampholeon taxa, indicating that vicariance and climate change were possibly the most influential factors driving speciation in the group. A relaxed Bayesian clock suggests that speciation times coincided both with the northern movement of Africa, which caused the constriction of the pan African forest, and to rifting in east Africa ca. 20 Myr ago. Subsequent speciation among taxa was probably the result of gradual desiccation of forests between 20 and 5 Myr ago.


Asunto(s)
Clima , Lagartos/clasificación , Lagartos/genética , Filogenia , África , Animales , Secuencia de Bases , Teorema de Bayes , ADN Mitocondrial/genética , Evolución Molecular , Genes RAG-1/genética , Geografía , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie
11.
PLoS One ; 7(2): e31314, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22348069

RESUMEN

BACKGROUND: One clade of Malagasy leaf chameleons, the Brookesia minima group, is known to contain species that rank among the smallest amniotes in the world. We report on a previously unrecognized radiation of these miniaturized lizards comprising four new species described herein. METHODOLOGY/PRINCIPAL FINDINGS: The newly discovered species appear to be restricted to single, mostly karstic, localities in extreme northern Madagascar: Brookesia confidens sp. n. from Ankarana, B. desperata sp. n. from Forêt d'Ambre, B. micra sp. n. from the islet Nosy Hara, and B. tristis sp. n. from Montagne des Français. Molecular phylogenetic analyses based on one mitochondrial and two nuclear genes of all nominal species in the B. minima group congruently support that the four new species, together with B. tuberculata from Montagne d'Ambre in northern Madagascar, form a strongly supported clade. This suggests that these species have diversified in geographical proximity in this small area. All species of the B. minima group, including the four newly described ones, are characterized by very deep genetic divergences of 18-32% in the ND2 gene and >6% in the 16S rRNA gene. Despite superficial similarities among all species of this group, their status as separate evolutionary lineages is also supported by moderate to strong differences in external morphology, and by clear differences in hemipenis structure. CONCLUSION/SIGNIFICANCE: The newly discovered dwarf chameleon species represent striking cases of miniaturization and microendemism and suggest the possibility of a range size-body size relationship in Malagasy reptiles. The newly described Brookesia micra reaches a maximum snout-vent length in males of 16 mm, and its total length in both sexes is less than 30 mm, ranking it among the smallest amniote vertebrates in the world. With a distribution limited to a very small islet, this species may represent an extreme case of island dwarfism.


Asunto(s)
Tamaño Corporal , Especiación Genética , Lagartos , Animales , Femenino , Geografía , Madagascar , Masculino
12.
Ecol Evol ; 2(7): 1468-79, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22957155

RESUMEN

WE CONDUCTED A COMPREHENSIVE MOLECULAR PHYLOGENETIC STUDY FOR A GROUP OF CHAMELEONS FROM MADAGASCAR (CHAMAELEONIDAE: Calumma nasutum group, comprising seven nominal species) to examine the genetic and species diversity in this widespread genus. Based on DNA sequences of the mitochondrial gene (ND2) from 215 specimens, we reconstructed the phylogeny using a Bayesian approach. Our results show deep divergences among several unnamed mitochondrial lineages that are difficult to identify morphologically. We evaluated lineage diversification using a number of statistical phylogenetic methods (general mixed Yule-coalescent model; SpeciesIdentifier; net p-distances) to objectively delimit lineages that we here consider as operational taxonomic units (OTUs), and for which the taxonomic status remains largely unknown. In addition, we compared molecular and morphological differentiation in detail for one particularly diverse clade (the C. boettgeri complex) from northern Madagascar. To assess the species boundaries within this group we used an integrative taxonomic approach, combining evidence from two independent molecular markers (ND2 and CMOS), together with genital and other external morphological characters, and conclude that some of the newly discovered OTUs are separate species (confirmed candidate species, CCS), while others should best be considered as deep conspecific lineages (DCLs). Our analysis supports a total of 33 OTUs, of which seven correspond to described species, suggesting that the taxonomy of the C. nasutum group is in need of revision.

13.
Mol Phylogenet Evol ; 47(1): 129-42, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18313331

RESUMEN

Recently, as genome-scale data have become available for more organisms, the development of phylogenetic markers from nuclear protein-coding loci (NPCL) has become more tractable. However, new methods are needed to efficiently sort the large number of genes from genomic databases into more limited sets appropriate for particular phylogenetic questions, while avoiding introns and paralogs. Here we describe a general methodology for identifying candidate single-copy NPCL from genomic databases. Our method uses information from reference genomes to identify genes with relatively large continuous protein-coding regions (i.e., 700bp). BLAST comparisons are used to help avoid genes with paralogous copies or close relatives (i.e., gene families) that might confound phylogenetic analyses. Exon boundary information is used to identify appropriately spaced potential priming sites. Using this method, we have developed over 25 novel NPCL, which span a variety of desirable evolutionary rates for phylogenetic analyses. Although targeted for higher-level phylogenetics of squamate reptiles, many of these loci appear to be useful across and within other vertebrate clades (e.g., amphibians), and some are relatively rapidly evolving and may be useful for closely-related species (e.g., within genera). This general method can be used whenever large-scale genomic data are available for an appropriate reference species (not necessarily within the focal clade). The method is also well suited for the development of intron regions for lower-level phylogenetic and phylogeographic studies. We provide an online database of alignments and suggested primers for approximately 85 NPCL that should be useful across vertebrates.


Asunto(s)
Núcleo Celular/genética , Genómica , Filogenia , Reptiles/clasificación , Reptiles/genética , Animales , Secuencia de Bases , Cartilla de ADN , Exones , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico
14.
Syst Biol ; 57(3): 420-31, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18570036

RESUMEN

Many authors have claimed that short branches in the Tree of Life will be very difficult to resolve with strong support, even with the large multilocus data sets now made possible by genomic resources. Short branches may be especially problematic because the underlying gene trees are expected to have discordant phylogenetic histories when the time between branching events is very short. Although there are many examples of short branches that are difficult to resolve, surprisingly, no empirical studies have systematically examined the relationships between branch lengths, branch support, and congruence among genes. Here, we examine these fundamental relationships quantitatively using a data set of 20 nuclear loci for 50 species of snakes (representing most traditionally recognized families). A combined maximum likelihood analysis of the 20 loci gives strong support for 69% of the nodes, but many remain weakly supported, with bootstrap values for 20% ranging from 21% to 66%. For the combined-data tree, we find significant correlations between the length of a branch, levels of bootstrap support, and the proportion of genes that are congruent with that branch in the separate analyses of each gene. We also find that strongly supported conflicts between gene trees over the resolution of individual branches are common (roughly 35% of clades), especially for shorter branches. Overall, our results support the hypothesis that short branches may be very difficult to confidently resolve, even with large, multilocus data sets. Nevertheless, our study provides strong support for many clades, including several that were controversial or poorly resolved in previous studies of snake phylogeny.


Asunto(s)
Genómica/métodos , Filogenia , Serpientes/clasificación , Animales , Teorema de Bayes , Funciones de Verosimilitud , Proteínas/química , Análisis de Secuencia de ADN , Serpientes/genética
15.
Mol Phylogenet Evol ; 23(1): 22-36, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12182400

RESUMEN

A phylogenetic hypothesis for the lizard family Chamaeleonidae is generated from 1503 aligned base positions (883 parsimony-informative) of mitochondrial DNA for specimens representing 59 species (57 ingroup and two outgroup). Sequences are reported for a genomic segment encoding eight transfer RNAs, NADH dehydrogenase component 2 (ND2), and portions of NADH dehydrogenase component 1 (ND1) and cytochrome c oxidase subunit 1 (COI). Newly reported genomic rearrangements and duplications support the hypothesis that mitochondrial gene order and content are destabilized by phylogenetic loss of a functional origin for light-strand replication between the genes encoding tRNA(Asn) and tRNA(Cys). A novel gene order characterizes all sampled Brookesia except B. nasus. Brookesia nasus, the apparent sister taxon of a clade formed by all other Brookesia, has the ancestral gene order but contains a large tandem duplication. An apparently noncoding 220 base pair insertion between the genes encoding ND2 and tRNA(Trp) is reported for Bradypodion tavetanum. Phylogenetic analysis identifies nine clades whose ancestral lineages diverged early in chamaeleonid evolutionary history: (1) Brookesia (possibly excluding B. nasus), (2) Chamaeleo subgenus Chamaeleo (excluding C. namaquensis), (3) Chamaeleo subgenus Trioceros, (4) viviparous Bradypodion, (5) oviparous Bradypodion, (6) genus Furcifer (except F. balteatus), and (7-9) three distinct clades of Calumma. Chamaeleo namaquensis, Brookesia nasus, Furcifer balteatus, Rhampholeon brevicaudatus, and R. spectrum represent ancient lineages dating to approximately the same time. Multiple independent losses and a possible secondary gain of horns are inferred for Trioceros. Viviparity has at least two separate origins in chameleons, one in Bradypodion and


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Lagartos/clasificación , Lagartos/genética , Filogenia , Animales , Secuencia de Bases , Codón/genética , Cartilla de ADN , Variación Genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia de Alanina/genética , Especificidad de la Especie
16.
Syst Biol ; 53(5): 735-57, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15545252

RESUMEN

Squamate reptiles (snakes, lizards, and amphisbaenians) serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania (anoles, iguanas, chameleons, etc.) and Scleroglossa (skinks, geckos, snakes, etc.) has been correlated with major evolutionary shifts within Squamata. We present a molecular phylogenetic study of 69 squamate species using approximately 4600 (2876 parsimony-informative) base pairs (bp) of DNA sequence data from the nuclear genes RAG-1(approximately 2750 bp) and c-mos(approximately 360 bp) and the mitochondrial ND2 region (approximately 1500 bp), sampling all major clades and most major subclades. Under our hypothesis, species previously placed in Iguania, Anguimorpha, and almost all recognized squamate families form strongly supported monophyletic groups. However, species previously placed in Scleroglossa, Varanoidea, and several other higher taxa do not form monophyletic groups. Iguania, the traditional sister group of Scleroglossa, is actually highly nested within Scleroglossa. This unconventional rooting does not seem to be due to long-branch attraction, base composition biases among taxa, or convergence caused by similar selective forces acting on nonsister taxa. Studies of functional tongue morphology and feeding mode have contrasted the similar states found in Sphenodon(the nearest outgroup to squamates) and Iguania with those of Scleroglossa, but our findings suggest that similar states in Sphenodonand Iguania result from homoplasy. Snakes, amphisbaenians, and dibamid lizards, limbless forms whose phylogenetic positions historically have been impossible to place with confidence, are not grouped together and appear to have evolved this condition independently. Amphisbaenians are the sister group of lacertids, and dibamid lizards diverged early in squamate evolutionary history. Snakes are grouped with iguanians, lacertiforms, and anguimorphs, but are not nested within anguimorphs.


Asunto(s)
Filogenia , Reptiles/clasificación , Reptiles/genética , Animales , Composición de Base , Secuencia de Bases , Teorema de Bayes , Simulación por Computador , Cartilla de ADN , ADN Mitocondrial/genética , Genes RAG-1/genética , Genes mos/genética , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA