Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34556577

RESUMEN

Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 µm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme-heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis We observed rates of heme-to-heme electron transfer on the order of 109 s-1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser-Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-µs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.


Asunto(s)
Grupo Citocromo c/metabolismo , Citocromos/metabolismo , Electrones , Hemo/metabolismo , Histidina/metabolismo , Metionina/metabolismo , Shewanella/metabolismo , Grupo Citocromo c/química , Citocromos/química , Transporte de Electrón , Hemo/química , Histidina/química , Metionina/química , Simulación de Dinámica Molecular , Nanocables , Oxidación-Reducción
2.
J Am Chem Soc ; 145(39): 21344-21360, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37736878

RESUMEN

The nitrile containing Ru(II)polypyridyl complex [Ru(phen)2(11,12-dCN-dppz)]2+ (1) is shown to act as a sensitive infrared probe of G-quadruplex (G4) structures. UV-visible absorption spectroscopy reveals enantiomer sensitive binding for the hybrid htel(K) and antiparallel htel(Na) G4s formed by the human telomer sequence d[AG3(TTAG3)3]. Time-resolved infrared (TRIR) of 1 upon 400 nm excitation indicates dominant interactions with the guanine bases in the case of Λ-1/htel(K), Δ-1/htel(K), and Λ-1/htel(Na) binding, whereas Δ-1/htel(Na) binding is associated with interactions with thymine and adenine bases in the loop. The intense nitrile transient at 2232 cm-1 undergoes a linear shift to lower frequency as the solution hydrogen bonding environment decreases in DMSO/water mixtures. This shift is used as a sensitive reporter of the nitrile environment within the binding pocket. The lifetime of 1 in D2O (ca. 100 ps) is found to increase upon DNA binding, and monitoring of the nitrile and ligand transients as well as the diagnostic DNA bleach bands shows that this increase is related to greater protection from the solvent environment. Molecular dynamics simulations together with binding energy calculations identify the most favorable binding site for each system, which are in excellent agreement with the observed TRIR solution study. This study shows the power of combining the environmental sensitivity of an infrared (IR) probe in its excited state with the TRIR DNA "site effect" to gain important information about the binding site of photoactive agents and points to the potential of such amplified IR probes as sensitive reporters of biological environments.


Asunto(s)
Rutenio , Humanos , Rutenio/química , Vibración , ADN/química , Sitios de Unión , Nitrilos
3.
Chemistry ; 29(11): e202203250, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36398697

RESUMEN

G-quadruplexes are emerging targets in cancer research and understanding how diagnostic probes bind to DNA G-quadruplexes in solution is critical to the development of new molecular tools. In this study the binding of an enantiopure NIR emitting [Os(TAP)2 (dppz)]2+ complex to different G-quadruplex structures formed by human telomer (hTel) and cMYC sequences in solution is reported. The combination of NMR and time-resolved infrared spectroscopic techniques reveals the sensitivity of the emission response to subtle changes in the binding environment of the complex. Similar behaviour is also observed for the related complex [Os(TAP)2 (dppp2)]2+ upon quadruplex binding.


Asunto(s)
G-Cuádruplex , Osmio , Humanos , ADN/química , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética
4.
Chemistry ; 29(25): e202203038, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36625067

RESUMEN

Mn(I) C-H functionalization of coumarins provides a versatile and practical method for the rapid assembly of fused polycyclic pyridinium-containing coumarins in a regioselective manner. The synthetic strategy enables application of bench-stable organomanganese reagents in both photochemical- and thermal-promoted reactions. The cyclomanganated intermediates, and global reaction system, provide an ideal testing ground for structural characterization of the active Mn(I) carbonyl-containing species, including transient species observable by ultra-fast time-resolved spectroscopic methods. The thermodynamic reductive elimination product, solely encountered from reaction between alkynes and air-stable organometallic cyclomanganated coumarins, has enabled characterization of a critical seven-membered Mn(I) intermediate, detected by time-resolved infrared spectroscopy, enabling the elucidation of the temporal profile of key steps in the reductive elimination pathway. Quantitative data are provided. Manganated polycyclic products are readily decomplexed by AgBF4 , opening-up an efficient route to the formation of π-extended hybrid coumarin-pyridinium compounds.

5.
Phys Chem Chem Phys ; 25(34): 23316-23317, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37594131

RESUMEN

Correction for 'Time-resolved infra-red studies of photo-excited porphyrins in the presence of nucleic acids and in HeLa tumour cells: insights into binding site and electron transfer dynamics' by Páraic M. Keane et al., Phys. Chem. Chem. Phys., 2022, 24, 27524-27531, https://doi.org/10.1039/D2CP04604K.

6.
Analyst ; 147(15): 3464-3469, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35833538

RESUMEN

Binding of drugs to blood serum proteins can influence both therapeutic efficacy and toxicity. The ability to measure the concentrations of protein-bound drug molecules quickly and with limited sample preparation could therefore have considerable benefits in biomedical and pharmaceutical applications. Vibrational spectroscopies provide data quickly but are hampered by complex, overlapping protein amide I band profiles and water absorption. Here, we show that two-dimensional infrared (2D-IR) spectroscopy can achieve rapid detection and quantification of paracetamol binding to serum albumin in blood serum at physiologically-relevant levels with no additional sample processing. By measuring changes to the amide I band of serum albumin caused by structural and dynamic impacts of paracetamol binding we show that drug concentrations as low as 7 µM can be detected and that the availability of albumin for paracetamol binding is less than 20% in serum samples, allowing identification of paracetamol levels consistent with a patient overdose.


Asunto(s)
Acetaminofén , Suero , Amidas , Proteínas Sanguíneas , Humanos , Albúmina Sérica , Espectrofotometría Infrarroja
7.
Inorg Chem ; 61(6): 2745-2759, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34905688

RESUMEN

Binuclear Rh(I) and Ir(I) TMB (2,5-dimethyl-2,5-diisocyanohexane) and dimen (1,8-diisocyanomenthane) complexes possess dσ*pσ and dπpσ singlet and triplet excited states that can be selectively excited in the visible and UV spectral regions. Using perturbational spin-orbit TDDFT, we unraveled the detailed character and spin mixing of these electronic transitions and found that delocalization of pσ and dπ orbitals over C≡N- groups makes C≡N stretching vibrations sensitive reporters of electron density and structural changes upon electronic excitation. Picosecond time-resolved infrared spectra measured after visible light, 375 nm, and 316 nm excitation revealed excitation-wavelength-dependent deactivation cascades. Visible light irradiation prepares the 1dσ*pσ state that, after one or two (sub)picosecond relaxation steps, undergoes 70-1300 ps intersystem crossing to 3dσ*pσ, which is faster for the more flexible dimen complexes. UV-excited 1,3dπpσ states decay with (sub)picosecond kinetics through a manifold of high-lying triplet and mixed-spin states to 3dσ*pσ with lifetimes in the range of 6-19 ps (316 nm) and 19-43 ps (375 nm, Ir only), bypassing 1dσ*pσ. Most excited-state conversion and some relaxation steps are accompanied by direct decay to the ground state that is especially pronounced for the most flexible long/eclipsed Rh(dimen) conformer.

8.
Phys Chem Chem Phys ; 24(40): 24767-24783, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36200672

RESUMEN

Ultrafast two-dimensional infrared (2D-IR) spectroscopy of Escherichia coli Hyd-1 (EcHyd-1) reveals the structural and dynamic influence of the protein scaffold on the Fe(CO)(CN)2 unit of the active site. Measurements on as-isolated EcHyd-1 probed a mixture of active site states including two, which we assign to Nir-SI/II, that have not been previously observed in the E. coli enzyme. Explicit assignment of carbonyl (CO) and cyanide (CN) stretching bands to each state is enabled by 2D-IR. Energies of vibrational levels up to and including two-quantum vibrationally excited states of the CO and CN modes have been determined along with the associated vibrational relaxation dynamics. The carbonyl stretching mode potential is well described by a Morse function and couples weakly to the cyanide stretching vibrations. In contrast, the two CN stretching modes exhibit extremely strong coupling, leading to the observation of formally forbidden vibrational transitions in the 2D-IR spectra. We show that the vibrational relaxation times and structural dynamics of the CO and CN ligand stretching modes of the enzyme active site differ markedly from those of a model compound K[CpFe(CO)(CN)2] in aqueous solution and conclude that the protein scaffold creates a unique biomolecular environment for the NiFe site that cannot be represented by analogy to simple models of solvation.


Asunto(s)
Hidrogenasas , Hidrogenasas/química , Dominio Catalítico , Escherichia coli/metabolismo , Ligandos , Cianuros/química , Espectrofotometría Infrarroja/métodos , Proteínas
9.
Phys Chem Chem Phys ; 24(44): 27524-27531, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36345709

RESUMEN

Cationic porphyrins based on the 5,10,15,20-meso-(tetrakis-4-N-methylpyridyl) core (TMPyP4) have been studied extensively over many years due to their strong interactions with a variety of nucleic acid structures, and their potential use as photodynamic therapeutic agents and telomerase inhibitors. In this paper, the interactions of metal-free TMPyP4 and Pt(II)TMPyP4 with guanine-containing nucleic acids are studied for the first time using time-resolved infrared spectroscopy (TRIR). In D2O solution (where the metal-free form exists as D2TMPyP4) both compounds yielded similar TRIR spectra (between 1450-1750 cm-1) following pulsed laser excitation in their Soret B-absorption bands. Density functional theory calculations reveal that vibrations centred on the methylpyridinium groups are responsible for the dominant feature at ca. 1640 cm-1. TRIR spectra of D2TMPyP4 or PtTMPyP4 in the presence of guanosine 5'-monophosphate (GMP), double-stranded {d(GC)5}2 or {d(CGCAAATTTGCG)}2 contain negative-going signals, 'bleaches', indicative of binding close to guanine. TRIR signals for D2TMPyP4 or PtTMPyP bound to the quadruplex-forming cMYC sequence {d(TAGGGAGGG)}2T indicate that binding occurs on the stacked guanines. For D2TMPyP4 bound to guanine-containing systems, the TRIR signal at ca. 1640 cm-1 decays on the picosecond timescale, consistent with electron transfer from guanine to the singlet excited state of D2TMPyP4, although IR marker bands for the reduced porphyrin/oxidised guanine were not observed. When PtTMPyP is incorporated into HeLa tumour cells, TRIR studies show protein binding with time-dependent ps/ns changes in the amide absorptions demonstrating TRIR's potential for studying light-activated molecular processes not only with nucleic acids in solution but also in biological cells.


Asunto(s)
Ácidos Nucleicos , Porfirinas , Electrones , Sitios de Unión , Guanina
10.
J Am Chem Soc ; 143(3): 1356-1364, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33428402

RESUMEN

The ability of carboxylate groups to promote the direct functionalization of C-H bonds in organic compounds is unquestionably one of the most important discoveries in modern chemical synthesis. Extensive computational studies have indicated that this process proceeds through the deprotonation of a metal-coordinated C-H bond by the basic carboxylate, yet experimental validation of these predicted mechanistic pathways is limited and fraught with difficulty, mainly as rapid proton transfer is frequently obscured in ensemble measures in multistep reactions (i.e., a catalytic cycle consisting of several steps). In this paper, we describe a strategy to experimentally observe the microscopic reverse of the key C-H bond activation step underpinning functionalization processes (viz. M-C bond protonation). This has been achieved by utilizing photochemical activation of the thermally robust precursor [Mn(ppy)(CO)4] (ppy = metalated 2-phenylpyridine) in neat acetic acid. Time-resolved infrared spectroscopy on the picosecond-millisecond time scale allows direct observation of the states involved in the proton transfer from the acetic acid to the cyclometalated ligand, providing direct experimental evidence for the computationally predicted reaction pathways. The power of this approach to probe the mechanistic pathways in transition-metal-catalyzed reactions is demonstrated through experiments performed in toluene solution in the presence of PhC2H and HOAc. These allowed for the observation of sequential displacement of the metal-bound solvent by the alkyne, C-C bond formation though insertion in the Mn-C bond, and a slower protonation step by HOAc to generate the product of a Mn(I)-catalyzed C-H bond functionalization reaction.

11.
J Am Chem Soc ; 143(36): 14766-14779, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464120

RESUMEN

Assessment of the DNA photo-oxidation and synthetic photocatalytic activity of chromium polypyridyl complexes is dominated by consideration of their long-lived metal-centered excited states. Here we report the participation of the excited states of [Cr(TMP)2dppz]3+ (1) (TMP = 3,4,7,8-tetramethyl-1,10-phenanthroline; dppz = dipyrido[3,2-a:2',3'-c]phenazine) in DNA photoreactions. The interactions of enantiomers of 1 with natural DNA or with oligodeoxynucleotides with varying AT content (0-100%) have been studied by steady state UV/visible absorption and luminescence spectroscopic methods, and the emission of 1 is found to be quenched in all systems. The time-resolved infrared (TRIR) and visible absorption spectra (TA) of 1 following excitation in the region between 350 to 400 nm reveal the presence of relatively long-lived dppz-centered states which eventually yield the emissive metal-centered state. The dppz-localized states are fully quenched when bound by GC base pairs and partially so in the presence of an AT base-pair system to generate purine radical cations. The sensitized formation of the adenine radical cation species (A•+T) is identified by assigning the TRIR spectra with help of DFT calculations. In natural DNA and oligodeoxynucleotides containing a mixture of AT and GC of base pairs, the observed time-resolved spectra are consistent with eventual photo-oxidation occurring predominantly at guanine through hole migration between base pairs. The combined targeting of purines leads to enhanced photo-oxidation of guanine. These results show that DNA photo-oxidation by the intercalated 1, which locates the dppz in contact with the target purines, is dominated by the LC centered excited state. This work has implications for future phototherapeutics and photocatalysis.


Asunto(s)
Adenina/química , Complejos de Coordinación/química , ADN/química , Sustancias Intercalantes/química , Oxidantes/química , Cromo/química , ADN/efectos de la radiación , Teoría Funcional de la Densidad , Cinética , Ligandos , Modelos Químicos , Oxidación-Reducción/efectos de la radiación , Fenantrolinas/química , Fenazinas/química
12.
Anal Chem ; 93(2): 920-927, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33295755

RESUMEN

Glycine (Gly) is used as a model system to evaluate the ability of ultrafast two-dimensional infrared (2D-IR) spectroscopy to detect and quantify the low-molecular-weight proteinaceous components of blood serum. Combining data acquisition schemes to suppress absorption bands of H2O that overlap with the protein amide I band with analysis of peak patterns appearing in the off-diagonal region of the 2D-IR spectrum allows separation of the Gly spectral signature from that of the dominant protein fraction of serum in a transmission-mode 2D-IR measurement without any sample manipulation, e.g., filtration or drying. 2D-IR spectra of blood serum samples supplemented with varying concentrations of Gly were obtained, and a range of data analysis methods compared, leading to a detection limit of ∼3 mg/mL for Gly. The reported methodology provides a platform for a critical assessment of the sensitivity of 2D-IR for measuring the concentrations of amino acids, peptides, and low-molecular-weight proteins present in serum samples. We conclude that, in the case of several clinically relevant diagnostic molecules and their combinations, the potential exists for 2D-IR to complement IR absorption methods as the benefits of the second frequency dimension offered by 2D-IR spectroscopy outweigh the added technical complexity of the measurement.


Asunto(s)
Glicina/sangre , Animales , Caballos , Espectrofotometría Infrarroja
13.
Chemistry ; 27(12): 3979-3985, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33135818

RESUMEN

Manganese-mediated borylation of aryl/heteroaryl diazonium salts emerges as a general and versatile synthetic methodology for the synthesis of the corresponding boronate esters. The reaction proved an ideal testing ground for delineating the Mn species responsible for the photochemical reaction processes, that is, involving either Mn radical or Mn cationic species, which is dependent on the presence of a suitably strong oxidant. Our findings are important for a plethora of processes employing Mn-containing carbonyl species as initiators and/or catalysts, which have considerable potential in synthetic applications.

14.
Phys Chem Chem Phys ; 23(28): 15352-15363, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34254612

RESUMEN

Changes in the structural dynamics of double stranded (ds)DNA upon ligand binding have been linked to the mechanism of allostery without conformational change, but direct experimental evidence remains elusive. To address this, a combination of steady state infrared (IR) absorption spectroscopy and ultrafast temperature jump IR absorption measurements has been used to quantify the extent of fast (∼100 ns) fluctuations in (ds)DNA·Hoechst 33258 complexes at a range of temperatures. Exploiting the direct link between vibrational band intensities and base stacking shows that the absolute magnitude of the change in absorbance caused by fast structural fluctuations following the temperature jump is only weakly dependent on the starting temperature of the sample. The observed fast dynamics are some two orders of magnitude faster than strand separation and associated with all points along the 10-base pair duplex d(GCATATATCC). Binding the Hoechst 33258 ligand causes a small but consistent reduction in the extent of these fast fluctuations of base pairs located outside of the ligand binding region. These observations point to a ligand-induced reduction in the flexibility of the dsDNA near the binding site, consistent with an estimated allosteric propagation length of 15 Å, about 5 base pairs, which agrees well with both molecular simulation and coarse-grained statistical mechanics models of allostery leading to cooperative ligand binding.


Asunto(s)
ADN/química , Sitio Alostérico , Emparejamiento Base , Secuencia de Bases , Bisbenzimidazol/química , Cinética , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico , Espectrofotometría Infrarroja , Temperatura
15.
Anal Chem ; 92(4): 3463-3469, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31985198

RESUMEN

Ultrafast two-dimensional infrared (2D-IR) spectra can now be obtained in a matter of seconds, opening up the possibility of high-throughput screening applications of relevance to the biomedical and pharmaceutical sectors. Determining quantitative information from 2D-IR spectra recorded on different samples and different instruments is however made difficult by variations in beam alignment, laser intensity, and sample conditions. Recently, we demonstrated that 2D-IR spectroscopy of the protein amide I band can be performed in aqueous (H2O) rather than deuterated (D2O) solvents, and we now report a method that uses the magnitude of the associated thermal response of H2O as an internal normalization standard for 2D-IR spectra. Using the water response, which is temporally separated from the protein signal, to normalize the spectra allows significant reduction of the impact of measurement-to-measurement fluctuations on the data. We demonstrate that this normalization method enables creation of calibration curves for measurement of absolute protein concentrations and facilitates reproducible difference spectroscopy methodologies. These advances make significant progress toward the robust data handling strategies that will be essential for the realization of automated spectral analysis tools for large scale 2D-IR screening studies of protein-containing solutions and biofluids.


Asunto(s)
Albúmina Sérica Bovina/análisis , Temperatura , Agua/química , gammaglobulinas/análisis , Animales , Calibración , Bovinos , Humanos , Solventes/química , Espectrofotometría Infrarroja
16.
Chemistry ; 26(71): 17103-17109, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-32725823

RESUMEN

Ultrafast time-resolved infrared (TRIR) is used to report on the binding site of the [Ru(phen)2 (dppz)]2+ "light-switch" complex with both bimolecular (Oxytricha nova telomere) and intramolecular (human telomere) guanine-quadruplex structures in both K+ and Na+ containing solutions. TRIR permits the simultaneous monitoring both of the "dark" and "bright" states of the complex and of the quadruplex nucleobase bases, the latter via a Stark effect induced by the excited state of the complex. These data are used to establish the contribution of guanine base stacking and loop interactions to the binding site of this biologically relevant DNA structure in solution. A particularly striking observation is the strong thymine signal observed for the Na+ form of the human telomere sequence, which is expected to be in the anti-parallel conformation.

17.
J Am Chem Soc ; 141(38): 15190-15200, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31454482

RESUMEN

Multiheme cytochromes attract much attention for their electron transport properties. These proteins conduct electrons across bacterial cell walls and along extracellular filaments and when purified can serve as bionanoelectronic junctions. Thus, it is important and necessary to identify and understand the factors governing electron transfer in this family of proteins. To this end we have used ultrafast transient absorbance spectroscopy, to define heme-heme electron transfer dynamics in the representative multiheme cytochrome STC from Shewanella oneidensis in aqueous solution. STC was photosensitized by site-selective labeling with a Ru(II)(bipyridine)3 dye and the dynamics of light-driven electron transfer described by a kinetic model corroborated by molecular dynamics simulation and density functional theory calculations. With the dye attached adjacent to STC Heme IV, a rate constant of 87 × 106 s-1 was resolved for Heme IV → Heme III electron transfer. With the dye attached adjacent to STC Heme I, at the opposite terminus of the tetraheme chain, a rate constant of 125 × 106 s-1 was defined for Heme I → Heme II electron transfer. These rates are an order of magnitude faster than previously computed values for unlabeled STC. The Heme III/IV and I/II pairs exemplify the T-shaped heme packing arrangement, prevalent in multiheme cytochromes, whereby the adjacent porphyrin rings lie at 90° with edge-edge (Fe-Fe) distances of ∼6 (11) Å. The results are significant in demonstrating the opportunities for pump-probe spectroscopies to resolve interheme electron transfer in Ru-labeled multiheme cytochromes.


Asunto(s)
Complejos de Coordinación/metabolismo , Citocromos/metabolismo , Luz , Complejos de Coordinación/química , Citocromos/química , Transporte de Electrón , Simulación de Dinámica Molecular
18.
J Am Chem Soc ; 141(29): 11471-11480, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31306004

RESUMEN

Complexes with weakly coordinating ligands are often formed in chemical reactions and can play key roles in determining the reactivity, particularly in catalytic reactions. Using time-resolved X-ray absorption fine structure (XAFS) spectroscopy in combination with time-resolved IR (TRIR) spectroscopy and tungsten hexacarbonyl, W(CO)6, we are able to structurally characterize the formation of an organometallic alkane complex, determine the W-C distances, and monitor the reactivity with silane to form an organometallic silane complex. Experiments in perfluorosolvents doped with xenon afford initially the corresponding solvated complex, which is sufficiently reactive in the presence of Xe that we can then observe the coordination of Xe to the metal center, providing a unique insight into the metal-xenon bonding. These results offer a step toward elucidating the structure, bonding, and chemical reactivity of transient species by X-ray absorption spectroscopy, which has sensitivity to small structural changes. The XAFS results indicate that the bond lengths of metal-alkane (W-H-C) bond in W(CO)5(heptane) as 3.07 (±0.06) Å, which is longer than the calculated W-C (2.86 Å) for binding of the primary C-H, but shorter than the calculated W-C (3.12 Å) for the secondary C-H. A statistical average of the calculated W-C alkane bond lengths is 3.02 Å, and comparison of this value indicates that the value derived from the XAFS measurements is averaged over coordination of all C-H bonds consistent with alkane chain walking. Photolysis of W(CO)6 in the presence of HSiBu3 allows the conversion of W(CO)5(heptane) to W(CO)5(HSiBu3) with an estimated W-Si distance of 3.20 (±0.03) Å. Time-resolved TRIR and XAFS experiments following photolysis of W(CO)6 in perfluoromethylcyclohexane (PFMCH) allows the characterization of W(CO)5(PFMCH) with a W-F distance of 2.65 (±0.06) Å, and doping PFMCH with Xe allows the characterization of W(CO)5Xe with a W-Xe bond length of 3.10 (±0.02) Å.

19.
Faraday Discuss ; 220(0): 86-104, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31608916

RESUMEN

A combined experimental and theoretical study is presented of several ligand addition reactions of the triplet fragment 3CpMn(CO)2 formed upon photolysis of CpMn(CO)3. Experimental data are provided for reactions in n-heptane and perfluoromethylcyclohexane (PFMCH), as well as in PFMCH doped with C2H6, Xe and CO2. In PFMCH we find that the conversion of 3CpMn(CO)2 to 1CpMn(CO)2(PFMCH) is much slower (τ = 18 (±3) ns) than the corresponding reactions in conventional alkanes (τ = 111 (±10) ps). We measure the effect of the coordination ability by doping PFMCH with alkane, Xe and CO2; these doped ligands form the corresponding singlet adducts with significantly variable formation rates. The reactivity as measured by the addition timescale follows the order 1CpMn(CO)2(C5H10) (τ = 270 (±10) ps) > 1CpMn(CO)2Xe (τ = 3.9 (±0.4) ns) ∼ 1CpMn(CO)2(CO2) (τ = 4.7 (±0.5) ns) > 1CpMn(CO)2(C7F14) (τ = 18 (±3) ns). Electronic structure theory calculations of the singlet and triplet potential energy surfaces and of their intersections, together with non-adiabatic statistical rate theory, reproduce the observed rates semi-quantitatively. It is shown that triplet adducts of the ligand and 3CpMn(CO)2 play a role in the kinetics, and account for the variable timescales observed experimentally.

20.
Inorg Chem ; 58(1): 663-671, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30540448

RESUMEN

[Ru(TAP)2(dppz)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene; dppz = dipyrido[3,2- a:2',3'- c]phenazine) is known to photo-oxidize guanine in DNA. Whether this oxidation proceeds by direct photoelectron transfer or by proton-coupled electron transfer is still unknown. To help distinguish between these mechanisms, spectro-electrochemical experiments have been carried out with [Ru(TAP)2(dppz)]2+ in acetonitrile. The UV-vis and mid-IR spectra obtained for the one-electron reduced product were compared to those obtained by picosecond transient absorption and time-resolved infrared experiments of [Ru(TAP)2(dppz)]2+ bound to guanine-containing DNA. An interesting feature of the singly reduced species is an electronic transition in the near-IR region (with λmax at 1970 and 2820 nm). Density functional and time-dependent density functional theory simulations of the vibrational and electronic spectra of [Ru(TAP)2(dppz)]2+, the reduced complex [Ru(TAP)2(dppz)]+, and four isomers of [Ru(TAP)(TAPH)(dppz)]2+ (a possible product of proton-coupled electron transfer) were performed. Significantly, these predict absorption bands at λ > 1900 nm (attributed to a ligand-to-metal charge-transfer transition) for [Ru(TAP)2(dppz)]+ but not for [Ru(TAP)(TAPH)(dppz)]2+. Both the UV-vis and mid-IR difference absorption spectra of the electrochemically generated singly reduced species [Ru(TAP)2(dppz)]+ agree well with the transient absorption and time-resolved infrared spectra previously determined for the transient species formed by photoexcitation of [Ru(TAP)2(dppz)]2+ intercalated in guanine-containing DNA. This suggests that the photochemical process in DNA proceeds by photoelectron transfer and not by a proton-coupled electron transfer process involving formation of [Ru(TAP)(TAPH)(dppz)]2+, as is proposed for the reaction with 5'-guanosine monophosphate. Additional infrared spectro-electrochemical measurements and density functional calculations have also been carried out on the free TAP ligand. These show that the TAP radical anion in acetonitrile also exhibits strong broad near-IR electronic absorption (λmax at 1750 and 2360 nm).


Asunto(s)
Complejos de Coordinación/química , ADN/química , Sustancias Intercalantes/química , Oligonucleótidos/química , Complejos de Coordinación/efectos de la radiación , Teoría Funcional de la Densidad , Técnicas Electroquímicas , Sustancias Intercalantes/efectos de la radiación , Ligandos , Luz , Modelos Químicos , Oxidación-Reducción , Fenantrenos/química , Fenazinas/química , Rutenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA