Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37721334

RESUMEN

During neural development, cellular adhesion is crucial for interactions among and between neurons and surrounding tissues. This function is mediated by conserved cell adhesion molecules, which are tightly regulated to allow for coordinated neuronal outgrowth. Here, we show that the proprotein convertase KPC-1 (homolog of mammalian furin) regulates the Menorin adhesion complex during development of PVD dendritic arbors in Caenorhabditis elegans. We found a finely regulated antagonistic balance between PVD-expressed KPC-1 and the epidermally expressed putative cell adhesion molecule MNR-1 (Menorin). Genetically, partial loss of mnr-1 suppressed partial loss of kpc-1, and both loss of kpc-1 and transgenic overexpression of mnr-1 resulted in indistinguishable phenotypes in PVD dendrites. This balance regulated cell-surface localization of the DMA-1 leucine-rich transmembrane receptor in PVD neurons. Lastly, kpc-1 mutants showed increased amounts of MNR-1 and decreased amounts of muscle-derived LECT-2 (Chondromodulin II), which is also part of the Menorin adhesion complex. These observations suggest that KPC-1 in PVD neurons directly or indirectly controls the abundance of proteins of the Menorin adhesion complex from adjacent tissues, thereby providing negative feedback from the dendrite to the instructive cues of surrounding tissues.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Ligandos , Membrana Celular , Animales Modificados Genéticamente , Transporte Biológico , Caenorhabditis elegans/genética , Dendritas , Mamíferos , Proteínas de la Membrana , Proteínas de Caenorhabditis elegans/genética
2.
PLoS Genet ; 17(7): e1009475, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34197450

RESUMEN

The assembly of neuronal circuits involves the migrations of neurons from their place of birth to their final location in the nervous system, as well as the coordinated growth and patterning of axons and dendrites. In screens for genes required for patterning of the nervous system, we identified the catp-8/P5A-ATPase as an important regulator of neural patterning. P5A-ATPases are part of the P-type ATPases, a family of proteins known to serve a conserved function as transporters of ions, lipids and polyamines in unicellular eukaryotes, plants, and humans. While the function of many P-type ATPases is relatively well understood, the function of P5A-ATPases in metazoans remained elusive. We show here, that the Caenorhabditis elegans ortholog catp-8/P5A-ATPase is required for defined aspects of nervous system development. Specifically, the catp-8/P5A-ATPase serves functions in shaping the elaborately sculpted dendritic trees of somatosensory PVD neurons. Moreover, catp-8/P5A-ATPase is required for axonal guidance and repulsion at the midline, as well as embryonic and postembryonic neuronal migrations. Interestingly, not all axons at the midline require catp-8/P5A-ATPase, although the axons run in the same fascicles and navigate the same space. Similarly, not all neuronal migrations require catp-8/P5A-ATPase. A CATP-8/P5A-ATPase reporter is localized to the ER in most, if not all, tissues and catp-8/P5A-ATPase can function both cell-autonomously and non-autonomously to regulate neuronal development. Genetic analyses establish that catp-8/P5A-ATPase can function in multiple pathways, including the Menorin pathway, previously shown to control dendritic patterning in PVD, and Wnt signaling, which functions to control neuronal migrations. Lastly, we show that catp-8/P5A-ATPase is required for localizing select transmembrane proteins necessary for dendrite morphogenesis. Collectively, our studies suggest that catp-8/P5A-ATPase serves diverse, yet specific, roles in different genetic pathways and may be involved in the regulation or localization of transmembrane and secreted proteins to specific subcellular compartments.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Neuronas/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Animales Modificados Genéticamente , Axones/fisiología , Tipificación del Cuerpo , Proteínas de Caenorhabditis elegans/genética , Movimiento Celular/genética , Dendritas/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Vía de Señalización Wnt
3.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37954518

RESUMEN

Deficiency mapping remains a useful tool in the process of identifying causative genetic lesions in C. elegans mutant strains isolated from forward genetic screens, in particular of non-coding mutants. However, there are significant areas across the genome with no deficiency coverage at all, and the boundaries of many deficiencies remain poorly defined. Here, we describe a simple methodology to generate balanced deficiency strains with up to 230 kb molecularly defined deletions (mini-deficiencies) using CRISPR/Cas9, thus providing a simple path for both precise and tailored deficiency mapping.

4.
Nat Cell Biol ; 20(4): 393-399, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29556089

RESUMEN

Phagocytosis of dying cells is critical in development and immunity1-3. Although proteins for recognition and engulfment of cellular debris following cell death are known4,5, proteins that directly mediate phagosome sealing are uncharacterized. Furthermore, whether all phagocytic targets are cleared using the same machinery is unclear. Degeneration of morphologically complex cells, such as neurons, glia and melanocytes, produces phagocytic targets of various shapes and sizes located in different microenvironments6,7. Thus, such cells offer unique settings to explore engulfment programme mechanisms and specificity. Here, we report that dismantling and clearance of a morphologically complex Caenorhabditis elegans epithelial cell requires separate cell soma, proximal and distal process programmes. Similar compartment-specific events govern the elimination of a C. elegans neuron. Although canonical engulfment proteins drive cell soma clearance, these are not required for process removal. We find that EFF-1, a protein previously implicated in cell-cell fusion 8 , specifically promotes distal process phagocytosis. EFF-1 localizes to phagocyte pseudopod tips and acts exoplasmically to drive phagosome sealing. eff-1 mutations result in phagocytosis arrest with unsealed phagosomes. Our studies suggest universal mechanisms for dismantling morphologically complex cells and uncover a phagosome-sealing component that promotes cell process clearance.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuronas/metabolismo , Fagocitos/metabolismo , Fagocitosis , Fagosomas/metabolismo , Seudópodos/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Muerte Celular , Glicoproteínas de Membrana/genética , Mutación , Neuronas/patología , Fagocitos/ultraestructura , Fagosomas/genética , Fagosomas/ultraestructura , Seudópodos/genética , Seudópodos/ultraestructura , Transducción de Señal
5.
Biol Psychiatry ; 77(11): 969-78, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25542305

RESUMEN

BACKGROUND: Where a neuron is positioned in the brain during development determines neuronal circuitry and information processing needed for normal brain function. When aberrations in this process occur, cognitive disorders may result. Patients diagnosed with schizophrenia have been reported to show altered neuronal connectivity and heterotopias. To elucidate pathways by which this process occurs and become aberrant, we have chosen to study the long isoform of nitric oxide synthase 1 adaptor protein (NOS1AP), a protein encoded by a susceptibility gene for schizophrenia. METHODS: To determine whether NOS1AP plays a role in cortical patterning, we knocked down or co-overexpressed NOS1AP and a green fluorescent protein or red fluorescent protein (TagRFP) reporter in neuronal progenitor cells of the embryonic rat neocortex using in utero electroporation. We analyzed sections of cortex (ventricular zone, intermediate zone, and cortical plate [CP]) containing green fluorescent protein or red fluorescent protein TagRFP positive cells and counted the percentage of positive cells that migrated to each region from at least three rats for each condition. RESULTS: NOS1AP overexpression disrupts neuronal migration, resulting in increased cells in intermediate zone and less cells in CP, and decreases dendritogenesis. Knockdown results in increased migration, with more cells reaching the CP. The phosphotyrosine binding region, but not the PDZ-binding motif, is necessary for NOS1AP function. Amino acids 181 to 307, which are sufficient for NOS1AP-mediated decreases in dendrite number, have no effect on migration. CONCLUSIONS: Our studies show for the first time a critical role for the schizophrenia-associated gene NOS1AP in cortical patterning, which may contribute to underlying pathophysiology seen in schizophrenia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Movimiento Celular/genética , Neocórtex/citología , Células-Madre Neurales/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Recién Nacidos , Células COS , Chlorocebus aethiops , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Mutación/genética , Células-Madre Neurales/metabolismo , Dominios PDZ/genética , Embarazo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Transgénicas , Transfección , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA