Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 9(5): e15522, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37180913

RESUMEN

Projectors have become one major medium in modern teaching, with large area-size displays emerging as an alternative. What concerns the general public is whether such eLearning would impose threat on eyes, by noting blue enriched white light to be hazardous to retina and else. Especially, little was known about their permissible viewing time under a certain viewing clarity. We had hence carried out a quantitative study with the use of a blue-hazard quantification spectrometer to determine the permissible viewing time when using a projector and a large size TV screen for displaying. Surprisingly, the large TV screen could permit a much longer viewing time, meaning which is more eye-friendly. It is plausibly because its resolution is much higher than that of the projector. Two dilemmas were observed in such eLearning; those sitting in the front would suffer a much higher illuminance, leading to a much shorter viewing time, while those sitting in the back would need a far much larger font size to see clearly. To ensure both viewing clarity and a sufficiently long permissible viewing time, orange text on black background is suggested to replace the defaulted black text on white background. The permissible viewing time could hence drastically increase from 1.3 to 83 h at 2 m by viewing a 30 pt font for the TV and from 0.4 to 54 h for the projection. At 6 m, the permissible viewing time was increased from 12 to 236 h for the TV and from 3 to 160 h for the projection, based on a viewable 94 pt font. These results may help educators and other e-display users to wisely apply the display tools with safety.

2.
ACS Appl Mater Interfaces ; 14(50): 55898-55904, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36485031

RESUMEN

Aluminum has been extensively used as a conductor material in numerous electronic devices, including solar cells, light-emitting diodes (LEDs), organic LEDs (OLEDs), and thin-film transistors. However, its spiking surface and easy electromigration have limited its performance. To overcome this, a trace amount of nonprecious copper dopant has been proven effective in enhancing device reliability. Nevertheless, a comprehensive investigation regarding the effect of copper doping on the morphology at the aluminum conductor-organic interface is yet to be done. We had hence fabricated a series of green OLED devices to probe how copper doping affected the aluminum conductor, morphologically and electrically, and the corresponding device's efficiency and lifetime performance. We found 4 wt % copper doping to be highly effective in enabling a spike-less and smoother aluminum interface, which in turn enabled the fabrication of devices with much higher efficiency and lifetime. Specifically, the corresponding power efficacy at 1000 cd/m2 was increased from 32 to 42 lm/W and the lifetime increased from 75 to 263 h, an increment of 250%. Atomic force microscopy confirmed that the copper doping did help smooth out the conductor interface as deposited and reduce electromigration upon operation.

3.
Eur J Pharmacol ; 590(1-3): 430-6, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18579129

RESUMEN

8-Prenylkaempferol is a prenylflavonoid isolated from the roots of Sophora flavescens, a Chinese herb with anti-inflammatory properties. However whether 8-prenylkaempferol itself displayed an anti-inflammatory activity remained unclear. In this study, we evaluated the effect of 8-prenylkaempferol on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages. 8-Prenylkaempferol inhibited significantly LPS-induced NO production through suppressing inducible NO synthase (iNOS) expression at both protein and mRNA levels but failed to affect sodium nitroprusside-triggered NO production, iNOS enzyme activity, and cell viability. Further investigation of the mechanisms revealed that 8-prenylkaempferol inhibited LPS-induced c-Jun phosphorylation (a major component of activator protein-1, AP-1), but did not attenuate IkB-alpha degradation nor NF-kappaB nuclear translocation. Cellular signaling analysis using mitogen-activating protein kinase (MAPK) inhibitors including 2'-amino-3'-methoxyflavone (PD98059, MEK1/2 inhibitor), 4-[5-(4-fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-imidazol-4-yl]pyridine (SB203580, p38 kinase inhibitor) and anthra[1-9-cd]pyrazol-6(2H)-one (SP600125, c-Jun N-terminal kinase inhibitor) demonstrated that extracellular signal-regulated kinase1/2 (ERK1/2), p38 and JNK all participated in LPS-stimulated iNOS expression and NO production, but 8-prenylkaempferol interfered selectively with JNK phosphorylation. On the other hand, LPS-induced c-Jun phosphorylation was attenuated in the presence of SP600125. We suggested that interfering with JNK-mediated c-Jun phosphorylation and thus blocking AP-1 activation might contribute to the suppression effects of 8-prenylkaempferol on iNOS. These findings provided the first molecular basis that 8-prenylkaempferol is an effective agent for attenuating pro-inflammatory NO induction.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Quempferoles/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Sophora/química , Factor de Transcripción AP-1/fisiología , Animales , Células Cultivadas , Proteínas I-kappa B/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas , Macrófagos/enzimología , Ratones , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Fosforilación , Transporte de Proteínas , Transducción de Señal/efectos de los fármacos
4.
Org Lett ; 20(9): 2538-2542, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29652154

RESUMEN

The synthesis, characterization, and application of two angular-shaped naphthalene bis(1,5-diamide-2,6-diylidene)malononitriles (NBAMs) as high-performance air-stable n-type organic field effect transistor (OFET) materials are reported. NBAM derivatives exhibit deep lowest-unoccupied molecular orbital (LUMO) levels, suitable for air-stable n-type OFETs. The OFET device based on NBAM-EH fabricated by vapor deposition exhibits a maximum electron mobility of 0.63 cm2 V-1 s-1 in air with an on/off current ratio ( Ion/ Ioff) of 105.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA