Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(47): 29064-29073, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36437803

RESUMEN

The shape of energy dispersions near the band-edges plays a decisive role in the transport properties, especially the carrier mobility, of semiconductors. In this work, we design and investigate the γ phase of tin monoxide and monochalcogenides γ-SnX (X = O, S, Se, and Te) through first-principles simulations. γ-SnX is found to be dynamically stable with phonon dispersions containing only positive phonon frequencies. Due to the hexagonal atomic lattice, the mechanical properties of γ-SnX single-layers are directionally isotropic and their elastic constants meet Born's criterion for mechanical stability. Our calculation results indicate that all four single-layers of γ-SnX are semiconductors with the Mexican-hat dispersions. The biaxial strain not only greatly changes the electronic structures of the γ-SnX single-layers, but also can cause a phase transition from semiconductor to metal. Meanwhile, the effects of an electric field on the electron states of γ-SnX single-layers are insignificant. γ-SnX structures have high electron mobility and their electron mobility is highly directional isotropic along the two transport directions x and y. The findings not only initially introduce the γ phase of group IV-VI compounds, but also serve as a premise for further studies on this material family with potential applications in the future, both theoretically and experimentally.

2.
Phys Chem Chem Phys ; 22(20): 11637-11643, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32406452

RESUMEN

In this paper, detailed investigations of the electronic and optical properties of a Janus SnSSe monolayer under a biaxial strain and electric field using ab initio methods are presented. Our calculations indicate that the Janus SnSSe monolayer is a semiconductor with an indirect band gap larger/lower than that of the SnSe2/SnS2 monolayer. To obtain accurate estimates of the band gap, both Perdew-Burke-Ernzerhof (PBE) and Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals have been used and the effect of spin-orbit coupling has also been included. While the influence of the electric field on the electronic and optical properties of the Janus SnSSe monolayer is quite weak, biaxial strain plays a key role in controlling these properties. The Janus SnSSe monolayer has a wide absorption spectrum, from visible light to the ultraviolet region. At equilibrium, the maximum absorption coefficient of the monolayer is up to 11.152 × 104 cm-1 in the ultraviolet region and it can be increased by strain engineering. With high absorption intensity in the visible light area and being able to tune the absorbance by strain, the Janus SnSSe monolayer becomes a promising material for applications in optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA