Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Semin Immunol ; 61-64: 101668, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36370673

RESUMEN

Human myeloid-derived suppressor cells (MDSC) represent a stage of immature myeloid cells and two main subsets can be identified: monocytic and polymorphonuclear. MDSC contribute to the establishment of an immunosuppressive tumor microenvironment (TME). The presence and the activity of MDSC in patients with different tumors correlate with poor prognosis. As previously reported, MDSC promote tumor growth and use different mechanisms to suppress the immune cell-mediated anti-tumor activity. Immunosuppression mechanisms used by MDSC are broad and depend on their differentiation stage and on the pathological context. It is known that some effector cells of the immune system can play an important role in the control of tumor progression and metastatic spread. In particular, innate lymphoid cells (ILC) contribute to control tumor growth representing a potential, versatile and, immunotherapeutic tool. Despite promising results obtained by using new cellular immunotherapeutic approaches, a relevant proportion of patients do not benefit from these therapies. Novel strategies have been investigated to overcome the detrimental effect exerted by the immunosuppressive component of TME (i.e. MDSC). In this review, we summarized the characteristics and the interactions occurring between MDSC and ILC in different tumors discussing how a deeper knowledge on MDSC biology could represent an important target for tumor immunotherapy capable of decreasing immunosuppression and enhancing anti-tumor activity exerted by immune cells.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Inmunidad Innata , Linfocitos/patología , Microambiente Tumoral
2.
Blood ; 140(3): 262-273, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35500103

RESUMEN

CD8+ T-cell activation has been demonstrated to distinguish patients with primary and infection-associated hemophagocytic lymphohistiocytosis (HLH) from patients with early sepsis. We evaluated the activation profile of CD8+ T cells in patients with various forms of secondary HLH (sHLH), including macrophage activation syndrome (MAS). Peripheral blood mononuclear cells from children with inactive systemic juvenile idiopathic arthritis (sJIA, n = 17), active sJIA (n = 27), MAS in sJIA (n = 14), infection-associated HLH (n = 7), and with other forms of sHLH (n = 9) were analyzed by flow cytometry. Compared with patients with active sJIA, in patients with MAS and sHLH of different origins, beside a significant increase in the frequency of CD38high/HLA-DR+CD8+ T cells, we found a significant increase in the frequency of CD8+ T cells expressing the CD4 antigen (CD4dimCD8+ T cells). These cells expressed high levels of the activation markers CD38 and HLA-DR, suggesting they were a subset of CD38high/HLA-DR+CD8+ T cells, as well as of the activation/exhaustion markers CD25, PD1, CD95, and interferon-γ. The frequency of CD4dimCD8+ T cells strongly correlated with most of the laboratory parameters of MAS severity and with circulating levels of CXCL9 and interleukin-18. These findings were confirmed in a prospective replication cohort in which no expansion of any particular T-cell receptor Vß family in CD3+ T cells of patients with sHLH was found. Finally, frequency of CD4dimCD8+, but not of CD38high/HLA-DR+CD8+ T cells, significantly correlated with a clinical severity score, further supporting the involvement of these cells in MAS/sHLH pathogenesis.


Asunto(s)
Artritis Juvenil , Linfohistiocitosis Hemofagocítica , Síndrome de Activación Macrofágica , Artritis Juvenil/complicaciones , Niño , Humanos , Leucocitos Mononucleares/patología , Linfohistiocitosis Hemofagocítica/patología , Síndrome de Activación Macrofágica/patología , Estudios Prospectivos
3.
Int J Cancer ; 152(8): 1698-1706, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36468179

RESUMEN

NK cells represent key players capable of driving antitumor immune responses. However, the potent immunosuppressive activity of the tumor microenvironment (TME) may impair their effector function. Here, we strengthen the importance of metabolic interactions between NK cells and TME and propose metabolic dysfunction as one of the major mechanisms behind NK failure in cancer treatment. In particular, we described that TME has a direct negative impact on NK cell function by disrupting their mitochondrial integrity and function in pediatric and adult patients with primary and metastatic cancer. Our results will help to design new strategies aimed at increasing the NK cell antitumor efficacy by their metabolic reprogramming. In this regard, we reveal an unprecedented role of IL15 in the metabolic reprogramming of NK cells enhancing their antitumor functions. IL15 prevents the inhibitory effect of soluble factors present in TME and restores both the metabolic characteristics and the effector function of NK cells inhibited by exposure to malignant pleural fluid. Thus, we propose here that IL15 may be exploited as a new strategy to metabolically reprogram NK cells with the aim of increasing the efficacy of NK-based immunotherapy in a wide range of currently refractory adult and pediatric solid tumors.


Asunto(s)
Neoplasias , Microambiente Tumoral , Adulto , Humanos , Niño , Interleucina-15/metabolismo , Células Asesinas Naturales , Neoplasias/metabolismo , Inmunoterapia/métodos
4.
Cancer Immunol Immunother ; 72(6): 1417-1428, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36451048

RESUMEN

Natural killer (NK) cells are cytotoxic lymphoid cells that play a key role in defenses against tumors. However, their function may be severely impaired in patients with pancreatic adenocarcinoma (PA). Indeed, PA cells release soluble factors, thereby generating an immunosuppressive environment that dysregulates NK-cell cytolytic function and favors tumor immune evasion. Here, we analyzed the interactions between NK and PA cells using the PANC-1 and CAPAN-1 cell lines derived from a ductal PA and metastatic lesion, respectively. Metastatic and nonmetastatic cell lines were both able to impair NK cytolytic activity. An analysis of the effect of NK cells and NK-cell-derived exosomes revealed substantial differences between the two cell lines. Thus, NK cells displayed higher cytotoxicity against nonmetastatic PA cells than metastatic PA cells in both 2D cultures and in a 3D extracellular matrix cell system. In addition, NK-derived exosomes could penetrate only PANC-1 spheroids and induce cell killing. Remarkably, when PANC-1 cells were exposed to NK-derived soluble factors, they displayed substantial changes in the expression of genes involved in epithelial-to-mesenchymal transition (EMT) and acquired resistance to NK-mediated cytolysis. These results, together with their correlation with poor clinical outcomes in PA patients, suggest that the induction of resistance to cytolysis upon exposure to NK-derived soluble factors could reflect the occurrence of EMT in tumor cells. Our data indicate that a deeper investigation of the interaction between NK cells and tumor cells may be crucial for immunotherapy, possibly improving the outcome of PA treatment by targeting critical steps of NK-tumor cell crosstalk.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/patología , Neoplasias Pancreáticas/patología , Células Asesinas Naturales , Línea Celular , Línea Celular Tumoral , Neoplasias Pancreáticas
5.
J Allergy Clin Immunol ; 149(5): 1772-1785, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34688777

RESUMEN

BACKGROUND: Innate lymphoid cells (ILCs) comprise cytotoxic natural killer (NK) cells and helper ILCs (hILCs). Human hILC development is less characterized as compared with that of NK cells, although all ILCs are developmentally related. It has been reported that the immunosuppressive drugs glucocorticoids (GCs) regulate ILC function, but whether they control ILC differentiation from hematopoietic stem cells (HSCs) is unknown. OBJECTIVES: This study sought to analyze the effect of GCs on ILC development from HSCs. METHODS: This study exploited an in vitro system to generate and expand from peripheral blood HSCs a multipotent CD56+ ILC precursor able to differentiate into NK cells, ILC1s, and ILC3s. We also analyzed ex vivo, at different time points, the peripheral blood of recipients of allogeneic HSC transplantation who were or were not treated with GCs and compared ILC subset reconstitution. RESULTS: Invitro, GCs favor the generation of NK cells from myeloid precursors, while they strongly impair lymphoid development. In support of these data, recipients of HSC transplantation who had been treated with GCs display a lower number of circulating hILCs, including the ILC precursor (ILCP) previously identified as a systemic substrate for tissue ILC differentiation. CONCLUSIONS: GCs impair the development of the CD117+ ILCP from CD34+ HSCs, while they do not affect the further steps of ILCP differentiation toward NK cells and hILC subsets. This reflects an association of GC treatment with a marked reduction of circulating hILCs in the recipients of HSC transplantation.


Asunto(s)
Glucocorticoides , Inmunidad Innata , Antígenos CD34 , Diferenciación Celular , Glucocorticoides/farmacología , Células Madre Hematopoyéticas , Humanos , Células Asesinas Naturales , Linfocitos
6.
Mod Pathol ; 35(3): 376-385, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33990704

RESUMEN

Eosinophilic, solid and cystic (ESC) renal cell carcinoma (RCC) is characterized by a solid and cystic architecture with cells showing abundant eosinophilic cytoplasm with hobnail arrangement and a cytokeratin 7-negative/cytokeratin 20-positive immunophenotype. Recent studies have suggested that bi-allelic events affecting TSC genes might play an important role for such tumors. However, only indirect evidence of the clonal origin of TSC mutation has been gathered so far. Therefore, in this paper we aimed to perform multi-regional tumor sampling molecular analysis in four ESC RCC cases that had been completely embedded, three sporadic and one occurring in a patient with tuberous sclerosis complex (TSC). Histologically, the 4 cases showed cystic and solid architecture and cells with abundant eosinophilic cytoplasm with cytoplasmic stippling and round to oval nuclei. Immunohistochemistry showed at least focal expression of cytokeratin 20 in all tissue samples and negative cytokeratin 7, as well as diffuse positivity for S100A1 and at least focal expression of cathepsin K in three out of four cases. The sporadic cases showed the same somatic TSC1 mutations in all tissue samples analyzed, while the TSC-associated case showed the same TSC1 alteration in both normal tissue and all tumor samples analyzed, proving the germline nature of the alteration. In conclusion, our data demonstrate that clonal TSC loss is a key event in ESC RCC and support considering ESC RCC as an entity given its distinct morphologic, immunophenotypical and molecular characteristics.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Esclerosis Tuberosa , Humanos , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Muestreo , Esclerosis Tuberosa/genética
7.
J Allergy Clin Immunol ; 147(1): 349-360, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32417134

RESUMEN

BACKGROUND: Programmed cell death protein 1 (PD-1)-immune checkpoint blockade has provided significant clinical efficacy across various types of cancer by unleashing both T and natural killer (NK) cell-mediated antitumor responses. However, resistance to immunotherapy occurs for many patients, rendering the identification of the mechanisms that control PD-1 expression extremely important to increase the response to the therapy. OBJECTIVE: We sought to identify the stimuli and the molecular mechanisms that induce the de novo PD-1 expression on human NK cells in the tumor setting. METHODS: NK cells freshly isolated from peripheral blood of healthy donors were stimulated with different combinations of molecules, and PD-1 expression was studied at the mRNA and protein levels. Moreover, ex vivo analysis of tumor microenvironment and NK cell phenotype was performed. RESULTS: Glucocorticoids are indispensable for PD-1 induction on human NK cells, in cooperation with a combination of cytokines that are abundant at the tumor site. Mechanistically, glucocorticoids together with IL-12, IL-15, and IL-18 not only upregulate PDCD1 transcription, but also activate a previously unrecognized transcriptional program leading to enhanced mRNA translation and resulting in an increased PD-1 amount in NK cells. CONCLUSIONS: These results provide evidence of a novel immune suppressive mechanism of glucocorticoids involving the transcriptional and translational control of an important immune checkpoint.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/inmunología , Glucocorticoides/inmunología , Interleucina-15/inmunología , Interleucina-18/inmunología , Interleucina-2/inmunología , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/inmunología , Células A549 , Humanos , Células K562
8.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066087

RESUMEN

Immune evasion is a key strategy adopted by tumor cells to escape the immune system while promoting their survival and metastatic spreading. Indeed, several mechanisms have been developed by tumors to inhibit immune responses. PD-1 is a cell surface inhibitory receptor, which plays a major physiological role in the maintenance of peripheral tolerance. In pathological conditions, activation of the PD-1/PD-Ls signaling pathway may block immune cell activation, a mechanism exploited by tumor cells to evade the antitumor immune control. Targeting the PD-1/PD-L1 axis has represented a major breakthrough in cancer treatment. Indeed, the success of PD-1 blockade immunotherapies represents an unprecedented success in the treatment of different cancer types. To improve the therapeutic efficacy, a deeper understanding of the mechanisms regulating PD-1 expression and signaling in the tumor context is required. We provide an overview of the current knowledge of PD-1 expression on both tumor-infiltrating T and NK cells, summarizing the recent evidence on the stimuli regulating its expression. We also highlight perspectives and limitations of the role of PD-L1 expression as a predictive marker, discuss well-established and novel potential approaches to improve patient selection and clinical outcome and summarize current indications for anti-PD1/PD-L1 immunotherapy.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Terapia Molecular Dirigida , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Humanos , Neoplasias/fisiopatología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Escape del Tumor
9.
Int J Cancer ; 145(6): 1660-1668, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30856277

RESUMEN

The tumor microenvironment (TM) contains a wide variety of cell types and soluble factors capable of suppressing immune responses. While the presence of NK cells in pleural effusions (PE) has been documented, no information exists on the presence of other innate lymphoid cell (ILC) subsets and on the expression of programmed cell death-1 (PD-1) in NK and ILC. The presence of ILC was assessed in PE of 54 patients (n = 33 with mesothelioma, n = 15 with adenocarcinoma and n = 6 with inflammatory pleural diseases) by cell staining with suitable antibody combinations and cytofluorimetric analysis. The cytokine production of ILC isolated from both PE and autologous peripheral blood was analyzed upon cell stimulation and intracytoplasmic staining. We show that, in addition to NK cells, also ILC1, ILC2 and ILC3 are present in malignant PE and that the prevalent subset is ILC3. PE-ILC subsets produced their typical sets of cytokines upon activation. In addition, we analyzed the PD-1 expression on NK/ILC by multiparametric flow-cytometric analysis, while the expression of PD-1 ligand (PD-L1) was evaluated by immunohistochemical analysis. Both NK cells and ILC3 expressed functional PD-1, moreover, both tumor samples and malignant PE-derived tumor cell lines were PD-L1+ suggesting that the interaction between PD-1+ ILC and PD-L1+ tumor cells may hamper antitumor immune responses mediated by NK and ILC.


Asunto(s)
Inmunidad Innata , Metástasis de la Neoplasia , Neoplasias/patología , Derrame Pleural/patología , Receptor de Muerte Celular Programada 1/metabolismo , Anciano , Anciano de 80 o más Años , Antígenos CD/inmunología , Citocinas/biosíntesis , Humanos , Inmunofenotipificación , Células Asesinas Naturales/inmunología , Persona de Mediana Edad , Derrame Pleural/inmunología , Microambiente Tumoral
10.
Cytokine ; 103: 34-37, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29324258

RESUMEN

The impact of early antiretroviral therapy (ART) during Primary HIV Infection (PHI) on the hematopoietic progenitor cells (HPCs) homeostasis is not available. This study aimed to characterize HPCs and their relationship with cytokines regulating progenitors function in ART-treated patients with PHI. We enrolled HIV infected patients treated with ART during PHI. Circulating HPCs, Lymphoid-HPCs (L-HPCs) frequency and plasmatic concentrations of IL-7, IL-18 and Stem Cell Factor (SCF) were analysed at baseline and after 6 months of therapy. ART introduction during PHI restored the decline of L-HPCs, induced a decrease in the level of pro-inflammatory IL-18 cytokine and a parallel increase of SCF. Moreover, L-HPCs frequency positively correlated with IL-18 at baseline, and with SCF after 6 months of therapy, suggesting that different signals impact L-HPCs expansion and maintenance before and after treatment. Finally, the SCF receptor expression on HPCs decreased after early ART initiation. These insights may open new perspectives for the evaluation of cytokine-driven L-HPCs expansion and their impact on the homeostasis of hematopoietic compartment during HIV infection.


Asunto(s)
Infecciones por VIH/sangre , VIH-1 , Células Madre Hematopoyéticas/metabolismo , Interleucina-18/sangre , Factor de Células Madre/sangre , Adulto , Antirretrovirales/administración & dosificación , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/patología , Células Madre Hematopoyéticas/patología , Humanos , Masculino
11.
Clin Immunol ; 183: 82-90, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28736275

RESUMEN

First anti-HCV treatments, that include protease inhibitors in conjunction with IFN-α and Ribavirin, increase the sustained virological response (SVR) up to 80% in patients infected with HCV genotype 1. The effects of triple therapies on dendritic cell (DC) compartment have not been investigated. In this study we evaluated the effect of telaprevir-based triple therapy on DC phenotype and function, and their possible association with treatment outcome. HCV+ patients eligible for telaprevir-based therapy were enrolled, and circulating DC frequency, phenotype, and function were evaluated by flow-cytometry. The antiviral activity of plasmacytoid DC was also tested. In SVR patients, myeloid DC frequency transiently decreased, and returned to baseline level when telaprevir was stopped. Moreover, an up-regulation of CD80 and CD86 on mDC was observed in SVR patients as well as an improvement of IFN-α production by plasmacytoid DC, able to inhibit in vitro HCV replication.


Asunto(s)
Antivirales/uso terapéutico , Células Dendríticas/inmunología , Hepatitis C Crónica/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Anciano , Antígeno B7-1/inmunología , Antígeno B7-2/inmunología , Quimioterapia Combinada , Femenino , Hepatitis C Crónica/inmunología , Humanos , Interferón-alfa/inmunología , Interferón-alfa/uso terapéutico , Masculino , Persona de Mediana Edad , Polietilenglicoles/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Ribavirina/uso terapéutico , Respuesta Virológica Sostenida , Resultado del Tratamiento , Regulación hacia Arriba , Replicación Viral
13.
Front Immunol ; 15: 1356321, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420122

RESUMEN

Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia , Neoplasias/terapia , Sistemas de Liberación de Medicamentos , Terapia Molecular Dirigida , Receptor IGF Tipo 1
14.
Front Immunol ; 15: 1382931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736882

RESUMEN

Background: Neuroblastoma (NB) is characterized by both adrenergic (ADRN) and undifferentiated mesenchymal (MES) subsets. The ganglioside sialic acid-containing glycosphingolipid (GD2) is widely overexpressed on tumors of neuroectodermal origin promoting malignant phenotypes. MES cells are greatly enriched in post-therapy and relapsing tumors and are characterized by decreased expression of GD2. This event may cause failure of GD2-based immunotherapy. NK cells represent a key innate cell subset able to efficiently kill tumors. However, the tumor microenvironment (TME) that includes tumor cells and tumor-associated (TA) cells could inhibit their effector function. Methods: We studied eight NB primary cultures that, in comparison with commercial cell lines, more faithfully reflect the tumor cell characteristics. We studied four primary NB-MES cell cultures and two pairs of MES/ADRN (691 and 717) primary cultures, derived from the same patient. In particular, in the six human NB primary cultures, we assessed their phenotype, the expression of GD2, and the enzymes that control its expression, as well as their interactions with NK cells, using flow cytometry, RT-qPCR, and cytotoxicity assays. Results: We identified mature (CD105+/CD133-) and undifferentiated (CD133+/CD105-) NB subsets that express high levels of the MES transcripts WWTR1 and SIX4. In addition, undifferentiated MES cells display a strong resistance to NK-mediated killing. On the contrary, mature NB-MES cells display an intermediate resistance to NK-mediated killing and exhibit some immunomodulatory capacities on NK cells but do not inhibit their cytolytic activity. Notably, independent from their undifferentiated or mature phenotype, NB-MES cells express GD2 that can be further upregulated in undifferentiated NB-MES cells upon co-culture with NK cells, leading to the generation of mature mesenchymal GD2bright neuroblasts. Concerning 691 and 717, they show high levels of GD2 and resistance to NK cell-mediated killing that can be overcome by the administration of dinutuximab beta, the anti-GD2 monoclonal antibody applied in the clinic. Conclusions: NB is a heterogeneous tumor representing a further hurdle in NB immunotherapy. However, different from what was reported with NB commercial cells and independent of their MES/ADRN phenotype, the expression of GD2 and its displayed sensitivity to anti-GD2 mAb ADCC indicated the possible effectiveness of anti-GD2 immunotherapy.


Asunto(s)
Gangliósidos , Células Asesinas Naturales , Neuroblastoma , Humanos , Línea Celular Tumoral , Citotoxicidad Inmunológica , Gangliósidos/inmunología , Gangliósidos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Neuroblastoma/inmunología , Neuroblastoma/metabolismo , Células Tumorales Cultivadas , Escape del Tumor , Microambiente Tumoral/inmunología
15.
Front Immunol ; 15: 1368946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881905

RESUMEN

Background: In early infected or severe coronavirus disease 2019 (COVID-19) patients, circulating NK cells are consistently reduced, despite being highly activated or exhausted. The aim of this paper was to establish whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (SP) may directly trigger NK cells and through which receptor(s). Methods: SP-stimulated human NK cells have been evaluated for the expression of activation markers, cytokine release, and cytotoxic activity, as well as for gene expression profiles and NF-kB phosphorylation, and they have been silenced with specific small interfering RNAs. Results: SPs from the Wuhan strain and other variants of concern (VOCs) directly bind and stimulate purified NK cells by increasing activation marker expression, cytokine release, and cytolytic activity, prevalently in the CD56brightNK cell subset. VOC-SPs differ in their ability to activate NK cells, G614, and Delta-Plus strains providing the strongest activity in the majority of donors. While VOC-SPs do not trigger ACE2, which is not expressed on NK cells, or other activating receptors, they directly and variably bind to both Toll-like receptor 2 (TLR2) and TLR4. Moreover, SP-driven NK cell functions are inhibited upon masking such receptors or silencing the relative genes. Lastly, VOC-SPs upregulate CD56dimNK cell functions in COVID-19 recovered, but not in non-infected, individuals. Conclusions: TLR2 and TLR4 are novel activating receptors for SP in NK cells, suggesting a new role of these cells in orchestrating the pathophysiology of SARS-CoV-2 infection. The pathogenic relevance of this finding is highlighted by the fact that free SP providing NK cell activation is frequently detected in a SARS-CoV-2 inflamed environment and in plasma of infected and long-COVID-19 subjects.


Asunto(s)
COVID-19 , Células Asesinas Naturales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , COVID-19/inmunología , COVID-19/virología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/inmunología , Activación de Linfocitos/inmunología , Citocinas/metabolismo , Citocinas/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología
16.
Oncoimmunology ; 12(1): 2221081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304055

RESUMEN

Natural Killer (NK) cells are important components of the immune system in the defense against tumor growth and metastasis. They release exosomes containing proteins and nucleic acids, including microRNAs (miRNAs). NK-derived exosomes play a role in the anti-tumor NK cell function since they are able to recognize and kill cancer cells. However, the involvement of exosomal miRNAs in the function of NK exosomes is poorly understood. In this study, we explored the miRNA content of NK exosomes by microarray as compared to their cellular counterparts. The expression of selected miRNAs and lytic potential of NK exosomes against childhood B acute lymphoblastic leukemia cells after co-cultures with pancreatic cancer cells were also evaluated. We identified a small subset of miRNAs, including miR-16-5p, miR-342-3p, miR-24-3p, miR-92a-3p and let-7b-5p that is highly expressed in NK exosomes. Moreover, we provide evidence that NK exosomes efficiently increase let-7b-5p expression in pancreatic cancer cells and induce inhibition of cell proliferation by targeting the cell cycle regulator CDK6. Let-7b-5p transfer by NK exosomes could represent a novel mechanism by which NK cells counteract tumor growth. However, both cytolytic activity and miRNA content of NK exosomes were reduced upon co-culture with pancreatic cancer cells. Alteration in the miRNA cargo of NK exosomes, together with their reduced cytotoxic activity, could represent another strategy exerted by cancer to evade the immune response. Our study provides new information on the molecular mechanisms used by NK exosomes to exert anti-tumor-activity and offers new clues to integrate cancer treatments with NK exosomes.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Pancreáticas , Humanos , Niño , Exosomas/genética , MicroARNs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Células Asesinas Naturales , Neoplasias Pancreáticas
17.
Front Immunol ; 14: 1191908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435061

RESUMEN

Introduction: AATF/Che-1 over-expression in different tumors is well known and its effect on tumorigenicity is mainly due to its central role demonstrated in the oncogenic pathways of solid tumors, where it controls proliferation and viability. The effect exerted by tumors overexpressing Che-1 on the immune response has not yet been investigated. Methods: Starting from ChIP-sequencing data we confirmed Che-1 enrichment on Nectin-1 promoter. Several co-cultures experiments between NK-cells and tumor cells transduced by lentiviral vectors carrying Che-1-interfering sequence, analyzed by flow-cytometry have allowed a detailed characterization of NK receptors and tumor ligands expression. Results: Here, we show that Che-1 is able to modulate the expression of Nectin-1 ligand at the transcriptional level, leading to the impairment of killing activity of NK-cells. Nectin-1 down-modulation induces a modification in NK-cell ligands expression able to interact with activating receptors and to stimulate NK-cell function. In addition, NK-cells from Che-1 transgenic mice, confirming a reduced expression of activating receptors, exhibit impaired activation and a preferential immature status. Discussion: The critical equilibrium between NK-cell ligand expression on tumor cells and the interaction with NK cell receptors is affected by Che-1 over-expression and partially restored by Che-1 interference. The evidence of a new role for Che-1 as regulator of anti-tumor immunity supports the necessity to develop approaches able to target this molecule which shows a dual tumorigenic function as cancer promoter and immune response modulator.


Asunto(s)
Proteínas Portadoras , Neoplasias , Animales , Ratones , Ligandos , Ratones Transgénicos , Nectinas/genética , Neoplasias/genética , ARN Polimerasa II
18.
Front Immunol ; 14: 1183668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334356

RESUMEN

Background: Melanoma is a lethal skin cancer, and the risk of developing it is increased by exposure to ultraviolet (UV) radiation. The production of cytokines such as interleukin-15 (IL-15), induced by the exposure of skin cells to UV rays, could also promote melanoma development. The aim of this study is to investigate the possible role of Interleukin-15/Interleukin-15 Receptor α (IL-15/IL-15Rα) complexes in melanoma development. Methods: The expression of IL-15/IL-15Rα complexes by melanoma cells was evaluated both ex vivo and in vitro by tissue microarray, PCR, and flow cytometry. The presence of the soluble complex (sIL-15/IL-15Rα) in the plasma of metastatic melanoma patients was detected using an ELISA assay. Subsequently, we investigated the impact of natural killer (NK) cell activation after rIL-2 starvation followed by exposure to the sIL-15/IL-15Rα complex. Finally, by analyzing public datasets, we studied the correlation between IL-15 and IL-15Rα expressions and melanoma stage, NK and T-cell markers, and overall survival (OS). Results: Analysis of a melanoma tissue microarray shows a significant increase in the number of IL-15+ tumor cells from the benign nevi to metastatic melanoma stages. Metastatic melanoma cell lines express a phorbol-12-myristate-13-acetate (PMA)-cleavable membrane-bound IL-15 (mbIL-15), whereas cultures from primary melanomas express a PMA-resistant isoform. Further analysis revealed that 26% of metastatic patients present with consistently high plasmatic levels of sIL-15/IL-15Rα. When the recombinant soluble human IL-15/IL-15Rα complex is added to briefly starved rIL-2-expanded NK cells, these cells exhibit strongly reduced proliferation and levels of cytotoxic activity against K-562 and NALM-18 target cells. The analysis of public gene expression datasets revealed that high IL-15 and IL-15Rα intra-tumoral production correlates with the high levels of expression of CD5+ and NKp46+ (T and NK markers) and significantly correlates with a better OS in stages II and III, but not in stage IV. Conclusions: Membrane-bound and secreted IL-15/IL-15Rα complexes are continuously present during progression in melanoma. It is notable that, although IL-15/IL-15Rα initially promoted the production of cytotoxic T and NK cells, at stage IV promotion of the development of anergic and dysfunctional cytotoxic NK cells was observed. In a subgroup of melanoma metastatic patients, the continuous secretion of high amounts of the soluble complex could represent a novel NK cell immune escape mechanism.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Línea Celular Tumoral , Interleucina-15/metabolismo , Subunidad alfa del Receptor de Interleucina-15/genética , Subunidad alfa del Receptor de Interleucina-15/metabolismo , Células Asesinas Naturales , Melanoma/metabolismo
19.
Cell Metab ; 35(4): 633-650.e9, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898381

RESUMEN

The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.


Asunto(s)
Linfocitos T CD8-positivos , Ácido Linoleico , Ácido Linoleico/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA