Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 18(Suppl 1): 163, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470184

RESUMEN

BACKGROUND: Susceptibility of tsetse flies (Glossina spp.) to trypanosomes of both humans and animals has been associated with the presence of the endosymbiont Sodalis glossinidius. However, intrinsic biological characteristics of the flies and environmental factors can influence the presence of both S. glossinidius and the parasites. It thus remains unclear whether it is the S. glossinidius or other attributes of the flies that explains the apparent association. The objective of this study was to test whether the presence of Trypanosoma vivax, T. congolense and T. brucei are related to the presence of S. glossinidius in tsetse flies when other factors are accounted for: geographic location, species of Glossina, sex or age of the host flies. RESULTS: Flies (n = 1090) were trapped from four sites in the Shimba Hills and Nguruman regions in Kenya. Sex and species of tsetse (G. austeni, G. brevipalpis, G. longipennis and G. pallidipes) were determined based on external morphological characters and age was estimated by a wing fray score method. The presence of trypanosomes and S. glossinidius was detected using PCR targeting the internal transcribed spacer region 1 and the haemolysin gene, respectively. Sequencing was used to confirm species identification. Generalised Linear Models (GLMs) and Multiple Correspondence Analysis (MCA) were applied to investigate multivariable associations. The overall prevalence of trypanosomes was 42.1%, but GLMs revealed complex patterns of associations: the presence of S. glossinidius was associated with trypanosome presence but only in interactions with other factors and only in some species of trypanosomes. The strongest association was found for T. congolense, and no association was found for T. vivax. The MCA also suggested only a weak association between the presence of trypanosomes and S. glossinidius. Trypanosome-positive status showed strong associations with sex and age while S. glossinidius-positive status showed a strong association with geographic location and species of fly. CONCLUSIONS: We suggest that previous conclusions about the presence of endosymbionts increasing probability of trypanosome presence in tsetse flies may have been confounded by other factors, such as community composition of the tsetse flies and the specific trypanosomes found in different regions.


Asunto(s)
Enterobacteriaceae/fisiología , Simbiosis , Moscas Tse-Tse/microbiología , Moscas Tse-Tse/parasitología , Factores de Edad , Animales , Ambiente , Femenino , Geografía , Kenia , Masculino , Factores Sexuales
2.
J Antimicrob Chemother ; 69(3): 651-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24235095

RESUMEN

OBJECTIVES: Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. METHODS: The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. RESULTS: All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. CONCLUSIONS: TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter.


Asunto(s)
Acuagliceroporinas/metabolismo , Resistencia a Medicamentos , Melarsoprol/metabolismo , Pentamidina/metabolismo , Tripanocidas/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Alelos , Transporte Biológico , Genes Protozoarios , Análisis de Secuencia de ADN
3.
Trans R Soc Trop Med Hyg ; 118(9): 561-579, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38724044

RESUMEN

To explore the effects of climate change on malaria and 20 neglected tropical diseases (NTDs), and potential effect amelioration through mitigation and adaptation, we searched for papers published from January 2010 to October 2023. We descriptively synthesised extracted data. We analysed numbers of papers meeting our inclusion criteria by country and national disease burden, healthcare access and quality index (HAQI), as well as by climate vulnerability score. From 42 693 retrieved records, 1543 full-text papers were assessed. Of 511 papers meeting the inclusion criteria, 185 studied malaria, 181 dengue and chikungunya and 53 leishmaniasis; other NTDs were relatively understudied. Mitigation was considered in 174 papers (34%) and adaption strategies in 24 (5%). Amplitude and direction of effects of climate change on malaria and NTDs are likely to vary by disease and location, be non-linear and evolve over time. Available analyses do not allow confident prediction of the overall global impact of climate change on these diseases. For dengue and chikungunya and the group of non-vector-borne NTDs, the literature privileged consideration of current low-burden countries with a high HAQI. No leishmaniasis papers considered outcomes in East Africa. Comprehensive, collaborative and standardised modelling efforts are needed to better understand how climate change will directly and indirectly affect malaria and NTDs.


Asunto(s)
Cambio Climático , Dengue , Malaria , Enfermedades Desatendidas , Medicina Tropical , Humanos , Enfermedades Desatendidas/epidemiología , Malaria/epidemiología , Dengue/epidemiología , Fiebre Chikungunya/epidemiología , Salud Global , Leishmaniasis/epidemiología
4.
Proc Natl Acad Sci U S A ; 107(37): 16137-41, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20805508

RESUMEN

Human innate immunity against most African trypanosomes, including Trypanosoma brucei brucei, is mediated by a minor subclass of toxic serum HDL, called trypanosome lytic factor-1 (TLF-1). This HDL contains two primate specific proteins, apolipoprotein L-1 and haptoglobin (Hp)-related protein, as well as apolipoprotein A-1. These assembled proteins provide a powerful defense against trypanosome infection. Trypanosoma brucei rhodesiense causes human African sleeping sickness because it has evolved an inhibitor of TLF-1, serum resistance-associated (SRA) protein. Trypanosoma brucei gambiense lacks the SRA gene, yet it infects humans. As transfection of T. b. gambiense (group 1) is not possible, we initially used in vitro-selected TLF-1-resistant T. b. brucei to examine SRA-independent mechanisms of TLF-1 resistance. Here we show that TLF-1 resistance in T. b. brucei is caused by reduced expression of the Hp/Hb receptor gene (TbbHpHbR). Importantly, T. b. gambiense (group 1) also showed a marked reduction in uptake of TLF-1 and a corresponding decrease in expression of T. b. gambiense Hp/Hb receptor (TbgHpHbR). Ectopic expression of TbbHpHbR in TLF-1-resistant T. b. brucei rescued TLF-1 uptake, demonstrating that decreased TbbHpHbR expression conferred TLF-1 resistance. Ectopic expression of TbgHpHbR in TLF-1-resistant T. b. brucei failed to rescue TLF-1 killing, suggesting that coding sequence changes altered Hp/Hb receptor binding affinity for TLF-1. We propose that the combination of coding sequence mutations and decreased expression of TbgHpHbR directly contribute to parasite evasion of human innate immunity and infectivity of group 1 T. b. gambiense.


Asunto(s)
Lipoproteínas HDL/metabolismo , Receptores de Superficie Celular/metabolismo , Trypanosoma brucei gambiense/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Unión Proteica , Interferencia de ARN , ARN Mensajero/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei gambiense/aislamiento & purificación
5.
Eukaryot Cell ; 9(2): 336-43, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19966032

RESUMEN

The P2 aminopurine transporter, encoded by TbAT1 in African trypanosomes in the Trypanosoma brucei group, carries melaminophenyl arsenical and diamidine drugs into these parasites. Loss of this transporter contributes to drug resistance. We identified the genomic location of TbAT1 to be in the subtelomeric region of chromosome 5 and determined the status of the TbAT1 gene in two trypanosome lines selected for resistance to the melaminophenyl arsenical, melarsamine hydrochloride (Cymelarsan), and in a Trypanosoma equiperdum clone selected for resistance to the diamidine, diminazene aceturate. In the Trypanosoma brucei gambiense STIB 386 melarsamine hydrochloride-resistant line, TbAT1 is deleted, while in the Trypanosoma brucei brucei STIB 247 melarsamine hydrochloride-resistant and T. equiperdum diminazene-resistant lines, TbAT1 is present, but expression at the RNA level is no longer detectable. Further characterization of TbAT1 in T. equiperdum revealed that a loss of heterozygosity at the TbAT1 locus accompanied loss of expression and that P2-mediated uptake of [(3)H]diminazene is lost in drug-resistant T. equiperdum. Adenine-inhibitable adenosine uptake is still detectable in a DeltaTbat1 T. b. brucei mutant, although at a greatly reduced capacity compared to that of the wild type, indicating that an additional adenine-inhibitable adenosine permease, distinct from P2, is present in these cells.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Proteínas Protozoarias/genética , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Regiones no Traducidas 3' , ADN Protozoario/metabolismo , Diminazeno/análogos & derivados , Diminazeno/farmacología , Resistencia a Medicamentos/genética , Proteínas de Transporte de Membrana/metabolismo , Sistemas de Lectura Abierta , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
6.
Infect Immun ; 78(3): 1096-108, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20086091

RESUMEN

The postgenomic era has revolutionized approaches to defining host-pathogen interactions and the investigation of the influence of genetic variation in either protagonist upon infection outcome. We analyzed pathology induced by infection with two genetically distinct Trypanosoma brucei strains and found that pathogenesis is partly strain specific, involving distinct host mechanisms. Infections of BALB/c mice with one strain (927) resulted in more severe anemia and greater erythropoietin production compared to infections with the second strain (247), which, contrastingly, produced greater splenomegaly and reticulocytosis. Plasma interleukin-10 (IL-10) and gamma interferon levels were significantly higher in strain 927-infected mice, whereas IL-12 was higher in strain 247-infected mice. To define mechanisms underlying these differences, expression microarray analysis of host genes in the spleen at day 10 postinfection was undertaken. Rank product analysis (RPA) showed that 40% of the significantly differentially expressed genes were specific to infection with one or the other trypanosome strain. RPA and pathway analysis identified LXR/RXR signaling, IL-10 signaling, and alternative macrophage activation as the most significantly differentially activated host processes. These data suggest that innate immune response modulation is a key determinant in trypanosome infections, the pattern of which can vary, dependent upon the trypanosome strain. This strongly suggests that a parasite genetic component is responsible for causing disease in the host. Our understanding of trypanosome infections is largely based on studies involving single parasite strains, and our results suggest that an integrated host-parasite approach is required for future studies on trypanosome pathogenesis. Furthermore, it is necessary to incorporate parasite variation into both experimental systems and models of pathogenesis.


Asunto(s)
Variación Genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/patología , Tripanosomiasis Africana/parasitología , Anemia/etiología , Animales , Eritropoyetina/metabolismo , Perfilación de la Expresión Génica , Interferón gamma/sangre , Interleucina-10/sangre , Interleucina-12/sangre , Activación de Macrófagos , Ratones , Ratones Endogámicos BALB C , Reticulocitosis , Esplenomegalia/etiología , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/inmunología
7.
Nucleic Acids Res ; 33(21): 6688-93, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16314301

RESUMEN

Trypanosoma brucei is the causative agent of African sleeping sickness in humans and contributes to the debilitating disease 'Nagana' in cattle. To date we know little about the genes that determine drug resistance, host specificity, pathogenesis and virulence in these parasites. The availability of the complete genome sequence and the ability of the parasite to undergo genetic exchange have allowed genetic investigations into this parasite and here we report the first genetic map of T.brucei for the genome reference stock TREU 927, comprising of 182 markers and 11 major linkage groups, that correspond to the 11 previously identified chromosomes. The genetic map provides 90% probability of a marker being 11 cM from any given locus. Its comparison to the available physical map has revealed the average physical size of a recombination unit to be 15.6 Kb/cM. The genetic map coupled with the genome sequence and the ability to undertake crosses presents a new approach to identifying genes relevant to the disease and its prevention in this important pathogen through forward genetic analysis and positional cloning.


Asunto(s)
Genoma de Protozoos , Trypanosoma brucei brucei/genética , Animales , Mapeo Cromosómico , Cromosomas , Ligamiento Genético , Mapeo Físico de Cromosoma
8.
Nucleic Acids Res ; 32(19): 5712-20, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15507685

RESUMEN

Functionally related homologues of known genes can be difficult to identify in divergent species. In this paper, we show how multi-character analysis can be used to elucidate the relationships among divergent members of gene superfamilies. We used probabilistic modelling in conjunction with protein structural predictions and gene-structure analyses on a whole-genome scale to find gene homologies that are missed by conventional similarity-search strategies and identified a variant gene superfamily in six species of malaria (Plasmodium interspersed repeats, pir). The superfamily includes rif in P.falciparum, vir in P.vivax, a novel family kir in P.knowlesi and the cir/bir/yir family in three rodent malarias. Our data indicate that this is the major multi-gene family in malaria parasites. Protein localization of products from pir members to the infected erythrocyte membrane in the rodent malaria parasite P.chabaudi, demonstrates phenotypic similarity to the products of pir in other malaria species. The results give critical insight into the evolutionary adaptation of malaria parasites to their host and provide important data for comparative immunology between malaria parasites obtained from laboratory models and their human counterparts.


Asunto(s)
Familia de Multigenes , Plasmodium/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Evolución Molecular , Genes Protozoarios , Genómica , Humanos , Secuencias Repetitivas Esparcidas , Malaria/parasitología , Filogenia , Proteínas Protozoarias/análisis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
9.
Nucleic Acids Res ; 31(16): 4856-63, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12907728

RESUMEN

We report here the sequence of chromosome II from Trypanosoma brucei, the causative agent of African sleeping sickness. The 1.2-Mb pairs encode about 470 predicted genes organised in 17 directional clusters on either strand, the largest cluster of which has 92 genes lined up over a 284-kb region. An analysis of the GC skew reveals strand compositional asymmetries that coincide with the distribution of protein-coding genes, suggesting these asymmetries may be the result of transcription-coupled repair on coding versus non-coding strand. A 5-cM genetic map of the chromosome reveals recombinational 'hot' and 'cold' regions, the latter of which is predicted to include the putative centromere. One end of the chromosome consists of a 250-kb region almost exclusively composed of RHS (pseudo)genes that belong to a newly characterised multigene family containing a hot spot of insertion for retroelements. Interspersed with the RHS genes are a few copies of truncated RNA polymerase pseudogenes as well as expression site associated (pseudo)genes (ESAGs) 3 and 4, and 76 bp repeats. These features are reminiscent of a vestigial variant surface glycoprotein (VSG) gene expression site. The other end of the chromosome contains a 30-kb array of VSG genes, the majority of which are pseudogenes, suggesting that this region may be a site for modular de novo construction of VSG gene diversity during transposition/gene conversion events.


Asunto(s)
Cromosomas/genética , ADN Protozoario/genética , Trypanosoma brucei brucei/genética , Animales , Antígenos de Protozoos/genética , Mapeo Cromosómico , ADN Protozoario/química , Duplicación de Gen , Genes Protozoarios/genética , Datos de Secuencia Molecular , Seudogenes/genética , Recombinación Genética , Análisis de Secuencia de ADN
10.
Nucleic Acids Res ; 31(16): 4864-73, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12907729

RESUMEN

The African trypanosome, Trypanosoma brucei, causes sleeping sickness in humans in sub-Saharan Africa. Here we report the sequence and analysis of the 1.1 Mb chromosome I, which encodes approximately 400 predicted genes organised into directional clusters, of which more than 100 are located in the largest cluster of 250 kb. A 160-kb region consists primarily of three gene families of unknown function, one of which contains a hotspot for retroelement insertion. We also identify five novel gene families. Indeed, almost 20% of predicted genes are members of families. In some cases, tandemly arrayed genes are 99-100% identical, suggesting an active process of amplification and gene conversion. One end of the chromosome consists of a putative bloodstream-form variant surface glycoprotein (VSG) gene expression site that appears truncated and degenerate. The other chromosome end carries VSG and expression site-associated genes and pseudogenes over 50 kb of subtelomeric sequence where, unusually, the telomere-proximal VSG gene is oriented away from the telomere. Our analysis includes the cataloguing of minor genetic variations between the chromosome I homologues and an estimate of crossing-over frequency during genetic exchange. Genetic polymorphisms are exceptionally rare in sequences located within and around the strand-switches between several gene clusters.


Asunto(s)
Cromosomas/genética , ADN Protozoario/genética , Genes Protozoarios/genética , Trypanosoma brucei brucei/genética , Animales , Mapeo Cromosómico , ADN Protozoario/química , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Polimorfismo Genético , Recombinación Genética , Análisis de Secuencia de ADN , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
11.
Parasit Vectors ; 9(1): 301, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27216812

RESUMEN

BACKGROUND: Animal African Trypanosomiasis (AAT) is caused by several species of trypanosomes including Trypanosoma congolense, T. vivax, T. godfreyi, T. simiae and T. brucei. Two of the subspecies of T. brucei also cause Human African Trypanosomiasis. Although some of them can be mechanically transmitted by biting flies; these trypanosomes are all transmitted by tsetse flies which are the cyclical vectors of Trypanosoma congolense, T. godfreyi, T. simiae and T. brucei. We present here the first report assessing the prevalence of trypanosomes in tsetse flies in Nigeria using molecular tools. METHODS: 488 tsetse flies of three species, Glossina palpalis palpalis, G. tachinoides and G. morsitans submorsitans were collected from Wuya, Niger State and Yankari National Park, Bauchi State in 2012. Trypanosomes were detected and identified using an ITS1 PCR assay on DNA purified from the 'head plus proboscis' (H + P) and abdomen (ABD) parts of each fly. RESULTS: T. vivax and T. congolense Savannah were the major parasites detected. Trypanosomes prevalence was 7.1 % in G. p. palpalis, 11.9 % in G. tachinoides and 13.5 % in G. m. submorsitans. Prevalences of T. congolense Savannah ranged from 2.5 to 6.7 % and of T. vivax were approximately 4.5 %. Trypanosoma congolense Forest, T. godfreyi and T. simiae were also detected in the site of Yankari. The main biological and ecological determinants of trypanosome prevalence were the fly sex, with more trypanosomes found in females than males, and the site, with T. congolense subspp. being more abundant in Yankari than in Wuya. As expected, the trypanosome species diversity was higher in Yankari National Park than in the more agricultural site of Wuya where vertebrate host species diversity is lower. CONCLUSIONS: Our results show that T. congolense Savannah and T. vivax are the main species of parasite potentially causing AAT in the two study sites and that Yankari National Park is a potential reservoir of trypanosomes both in terms of parasite abundance and species diversity.


Asunto(s)
Insectos Vectores/parasitología , Trypanosoma/aislamiento & purificación , Tripanosomiasis Africana/parasitología , Moscas Tse-Tse/parasitología , Animales , Femenino , Humanos , Masculino , Nigeria/epidemiología , Trypanosoma/clasificación , Trypanosoma/genética , Trypanosoma congolense/clasificación , Trypanosoma congolense/genética , Trypanosoma congolense/aislamiento & purificación , Trypanosoma vivax/clasificación , Trypanosoma vivax/genética , Trypanosoma vivax/aislamiento & purificación , Tripanosomiasis Africana/epidemiología
12.
Mol Biochem Parasitol ; 143(1): 12-9, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15941603

RESUMEN

The genetic system on Trypanosoma brucei has been analysed by generating large numbers of independent progeny clones from two crosses, one between two cloned isolates of Trypanosoma brucei brucei and one between cloned isolates of T. b. brucei and Trypanosoma brucei gambiense, Type 2. Micro and minisatellite markers (located on each of the 11 megabase housekeeping chromosomes) were identified, that are heterozygous in one or more of the parental strains and the segregation of alleles at each locus was then determined in each of the progeny clones. The results unequivocally show that alleles segregate in the predicted ratios and that alleles at loci on different chromosomes segregate independently. These data provide statistically robust proof that the genetic system is Mendelian and that meiosis occurs. Segregation distortion is observed with the minisatellite locus located on chromosome I of T. b. gambiense Type 2 and neighboring markers, but analysis of markers further along this chromosome did not show distortion leading to the conclusion that this is due to selection acting on one part of this chromosome. The results obtained are discussed in relation to previously proposed models of mating and support the occurrence of meiosis to form haploid gametes that then fuse to form the diploid progeny in a single round of mating.


Asunto(s)
Cruzamientos Genéticos , Modelos Genéticos , Trypanosoma cruzi/genética , Animales , Segregación Cromosómica/genética , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Femenino , Marcadores Genéticos , Genotipo , Heterocigoto , Masculino , Meiosis , Trypanosoma cruzi/citología
13.
Proc Biol Sci ; 269(1489): 431-6, 2002 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-11886633

RESUMEN

A major mechanism whereby malaria parasites evade the host immune response to give chronic infections in patients' blood for months, or even years, is antigenic variation. In order to generate variant antigens, parasites require large multigene families. Although several gene families involved in these phenomena have been identified in the human malaria Plasmodium falciparum, to date no variant antigen gene families have been identified in malaria species that will infect widely used rodent laboratory hosts. Here we present, for the first time, to our knowledge, a large multigene family conserved in both rodent and human malarias, which is a strong candidate as a major variant antigen gene family. In each of four species of Plasmodium, three rodent malarias and the human pathogen P. vivax, homologues of the gene family were found to have a conserved three-exon structure. In the rodent malaria P. chabaudi, transcription of members of the gene family was developmentally regulated with maximum expression in late trophozoite stages, which is the developmental stage known to express variant antigen proteins.


Asunto(s)
Antígenos de Protozoos/genética , Genes Protozoarios/genética , Variación Genética/genética , Malaria/parasitología , Familia de Multigenes/genética , Plasmodium/genética , Enfermedades de los Roedores/parasitología , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/biosíntesis , Secuencia Conservada/genética , Exones/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Filogenia , Plasmodium/clasificación , Roedores/parasitología , Alineación de Secuencia
14.
Methods Mol Biol ; 270: 173-86, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15153627

RESUMEN

The amplified (restriction) fragment length polymorphism (AFLP) technique is a method for DNA profiling that is now widely applied for assessing diversity among various organisms with varying genomic complexity, from small bacterial to large plant genomes. AFLP analysis combines the reliability of restriction enzyme digestion with the utility of the polymerase chain reaction. The technique can be applied to studies of DNA of any origin and complexity, without prior sequence knowledge. Therefore, it is very versatile and particularly valuable for organisms for which no substantive DNA sequence data are available. AFLP detects the presence of point mutations, insertions, deletions, and other genetic rearrangements. Typically, the fragments detected by AFLP are inherited in Mendelian fashion as co-dominant markers, making the technique amenable to tracking inheritance of genetic loci in progeny from crossed lines of organisms, and in studies of population genetics. This chapter describes the principles of AFLP and experimental procedures.


Asunto(s)
Polimorfismo de Longitud del Fragmento de Restricción , Secuencia de Bases , ADN/genética , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Reacción en Cadena de la Polimerasa
15.
PLoS Negl Trop Dis ; 7(11): e2526, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24244771

RESUMEN

African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics.


Asunto(s)
Genética de Población/métodos , Trypanosoma brucei rhodesiense/genética , Animales , ADN Protozoario/genética , Genotipo , Humanos , Malaui , Trypanosoma brucei rhodesiense/clasificación , Tripanosomiasis Africana/epidemiología , Uganda
16.
PLoS One ; 8(7): e67852, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844111

RESUMEN

BACKGROUND: Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates) throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits. METHODOLOGY/PRINCIPAL FINDINGS: A collection of sympatric T. brucei isolates from Côte d'Ivoire, consisting of T. b. brucei and both groups of T. b. gambiense have previously been categorized by isoenzymes, RFLPs and Blood Incubation Infectivity Tests. These samples were further characterized using the group 1 specific marker, TgSGP, and seven microsatellites. The relationships between the T. b. brucei and T. b. gambiense isolates were determined using principal components analysis, neighbor-joining phylogenetics, STRUCTURE, FST, Hardy-Weinberg equilibrium and linkage disequilibrium. CONCLUSIONS/SIGNIFICANCE: Group 1 T. b. gambiense form a clonal genetic group, distinct from group 2 and T. b. brucei, whereas group 2 T. b. gambiense are genetically indistinguishable from local T. b. brucei. There is strong evidence for mating within and between group 2 T. b. gambiense and T. b. brucei. We found no evidence to support the hypothesis that group 2 T. b. gambiense are hybrids of group 1 and T. b. brucei, suggesting that human infectivity has evolved independently in groups 1 and 2 T. b. gambiense.


Asunto(s)
Trypanosoma brucei brucei/genética , Trypanosoma brucei gambiense/genética , Tripanosomiasis Africana/parasitología , Animales , Côte d'Ivoire , Marcadores Genéticos/genética , Genética de Población , Genotipo , Humanos , Desequilibrio de Ligamiento , Repeticiones de Microsatélite/genética , Filogenia , Análisis de Componente Principal , Porcinos , Trypanosoma brucei brucei/clasificación , Trypanosoma brucei gambiense/clasificación
18.
PLoS Negl Trop Dis ; 5(9): e1287, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21909441

RESUMEN

BACKGROUND: The three sub-species of Trypanosoma brucei are important pathogens of sub-Saharan Africa. T. b. brucei is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. T. b. rhodesiense and T. b. gambiense are able to resist lysis by TLF. There are two distinct sub-groups of T. b. gambiense that differ genetically and by human serum resistance phenotypes. Group 1 T. b. gambiense have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 T. b. gambiense are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (HpHbR)) gene. Here we investigate if this is also true in group 2 parasites. METHODOLOGY: Isogenic resistant and sensitive group 2 T. b. gambiense were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the HpHbR gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to T. b. brucei. Both resistant and sensitive group 2, as well as group 1 T. b. gambiense, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed. CONCLUSIONS: Our data indicate that, despite group 1 T. b. gambiense avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 T. b. gambiense is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 T. b. gambiense variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of HpHbR. Thus there are differences in the mechanism of human serum resistance between T. b. gambiense groups 1 and 2.


Asunto(s)
Apolipoproteínas/farmacología , Productos Biológicos/farmacología , Lipoproteínas HDL/farmacología , Trypanosoma brucei gambiense/efectos de los fármacos , Apolipoproteína L1 , Apolipoproteínas/inmunología , Supervivencia Celular/efectos de los fármacos , Resistencia a Medicamentos , Humanos , Lipoproteínas HDL/inmunología , Pruebas de Sensibilidad Parasitaria , Suero/inmunología , Suero/parasitología , Trypanosoma brucei gambiense/clasificación , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei gambiense/fisiología
19.
Vet Parasitol ; 179(1-3): 35-42, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21377802

RESUMEN

Trypanosomosis caused by infection with protozoan parasites of the genus Trypanosoma is a major health constraint to cattle production in many African countries. One hundred and seventy one Bos indicus cattle from traditional pastoral Maasai (87) and more intensively managed Boran (84) animals in Tanzania were screened by PCR for the presence of African animal trypanosomes (Trypanosoma congolense, Trypanosoma vivax and Trypanosoma brucei), using blood samples archived on FTA cards. All cattle screened for trypanosomes were also genotyped at the highly polymorphic major histocompatibility complex (MHC) class II DRB3 locus to investigate possible associations between host MHC and trypanosome infection. Overall, 23.4% of the 171 cattle tested positive for at least one of the three trypanosome species. The prevalence of individual trypanosome species was 8.8% (T. congolense), 4.7% (T. vivax) and 15.8% (T. brucei). The high prevalence of T. brucei compared with T. congolense and T. vivax was unexpected as this species has previously been considered to be of lesser importance in terms of African bovine trypanosomosis. Significantly higher numbers of Maasai cattle were infected with T. brucei (23.0%, p=0.009) and T. congolense (13.8%, p=0.019) compared with Boran cattle (8.3% and 3.6%, respectively). Analysis of BoLA-DRB3 diversity in this cohort identified extensive allelic diversity. Thirty-three BoLA-DRB3 PCR-RFLP defined alleles were identified. One allele (DRB3*15) was significantly associated with an increased risk (odds ratio, OR=2.71, p=0.034) of T. brucei infection and three alleles (DRB3*35, *16 and *23) were associated with increased risk of T. congolense infection. While further work is required to dissect the role of these alleles in susceptibility to T. brucei and T. congolense infections, this study demonstrates the utility of FTA archived blood samples in combined molecular analyses of both host and pathogen.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Predisposición Genética a la Enfermedad , Tripanosomiasis Africana/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/genética , Estudios de Cohortes , Genotipo , Prevalencia , Tanzanía/epidemiología , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/genética
20.
PLoS Negl Trop Dis ; 3(12): e557, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19956590

RESUMEN

The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named TbOrg1). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (TbOrg2). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits.


Asunto(s)
Interacciones Huésped-Parásitos , Sitios de Carácter Cuantitativo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/patología , Animales , Modelos Animales de Enfermedad , Humanos , Hígado/patología , Ratones , Ratones Endogámicos ICR , Proteínas Protozoarias/genética , Bazo/patología , Tripanosomiasis Africana/parasitología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA