Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3232, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680900

RESUMEN

TWIK1 (K2P1.1, KCNK1) is a widely expressed pH-gated two-pore domain K+ channel (K2P) that contributes to cardiac rhythm generation and insulin release from pancreatic beta cells. TWIK1 displays unique properties among K2Ps including low basal activity and inhibition by extracellular protons through incompletely understood mechanisms. Here, we present cryo-EM structures of TWIK1 in lipid nanodiscs at high and low pH that reveal a previously undescribed gating mechanism at the K+ selectivity filter. At high pH, TWIK1 adopts an open conformation. At low pH, protonation of an extracellular histidine results in a cascade of conformational changes that close the channel by sealing the top of the selectivity filter, displacing the helical cap to block extracellular ion access pathways, and opening gaps for lipid block of the intracellular cavity. These data provide a mechanistic understanding for extracellular pH-gating of TWIK1 and illustrate how diverse mechanisms have evolved to gate the selectivity filter of K+ channels.


Asunto(s)
Activación del Canal Iónico , Protones , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Lípidos
2.
Neuron ; 110(7): 1139-1155.e6, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35120626

RESUMEN

The biophysical properties of existing optogenetic tools constrain the scale, speed, and fidelity of precise optogenetic control. Here, we use structure-guided mutagenesis to engineer opsins that exhibit very high potency while retaining fast kinetics. These new opsins enable large-scale, temporally and spatially precise control of population neural activity. We extensively benchmark these new opsins against existing optogenetic tools and provide a detailed biophysical characterization of a diverse family of opsins under two-photon illumination. This establishes a resource for matching the optimal opsin to the goals and constraints of patterned optogenetics experiments. Finally, by combining these new opsins with optimized procedures for holographic photostimulation, we demonstrate the simultaneous coactivation of several hundred spatially defined neurons with a single hologram and nearly double that number by temporally interleaving holograms at fast rates. These newly engineered opsins substantially extend the capabilities of patterned illumination optogenetic paradigms for addressing neural circuits and behavior.


Asunto(s)
Red Nerviosa , Opsinas , Optogenética , Holografía/métodos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Opsinas/química , Opsinas/genética , Optogenética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA