Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(1): 87-100, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37986217

RESUMEN

The kinetics of folding is crucial for the function of many regulatory RNAs including RNA G-quadruplexes (rG4s). Here, we characterize the folding pathways of a G-quadruplex from the telomeric repeat-containing RNA by combining all-atom molecular dynamics and coarse-grained simulations with circular dichroism experiments. The quadruplex fold is stabilized by cations and thus, the ion atmosphere forming a double layer surrounding the highly charged quadruplex guides the folding process. To capture the ionic double layer in implicit solvent coarse-grained simulations correctly, we develop a matching procedure based on all-atom simulations in explicit water. The procedure yields quantitative agreement between simulations and experiments as judged by the populations of folded and unfolded states at different salt concentrations and temperatures. Subsequently, we show that coarse-grained simulations with a resolution of three interaction sites per nucleotide are well suited to resolve the folding pathways and their intermediate states. The results reveal that the folding progresses from unpaired chain via hairpin, triplex and double-hairpin constellations to the final folded structure. The two- and three-strand intermediates are stabilized by transient Hoogsteen interactions. Each pathway passes through two on-pathway intermediates. We hypothesize that conformational entropy is a hallmark of rG4 folding. Conformational entropy leads to the observed branched multi-pathway folding process for TERRA25. We corroborate this hypothesis by presenting the free energy landscapes and folding pathways of four rG4 systems with varying loop length.


Asunto(s)
G-Cuádruplex , Pliegue del ARN , Entropía , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN/química
2.
J Mol Biol ; 436(4): 168422, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38158175

RESUMEN

Aß amyloid fibrils from Alzheimer's brain tissue are polymorphic and structurally different from typical in vitro formed Aß fibrils. Here, we show that brain-derived (ex vivo) fibril structures can be proliferated by seeding in vitro. The proliferation reaction is only efficient for one of the three abundant ex vivo Aß fibril morphologies, which consists of two peptide stacks, while the inefficiently proliferated fibril morphologies contain four or six peptide stacks. In addition to the seeded fibril structures, we find that de novo nucleated fibril structures can emerge in seeded samples if the seeding reaction is continued over multiple generations. These data imply a competition between de novo nucleation and seed extension and suggest further that seeding favours the outgrowth of fibril morphologies that contain fewer peptide stacks.


Asunto(s)
Péptidos beta-Amiloides , Amiloide , Encéfalo , Fragmentos de Péptidos , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/química , Péptidos beta-Amiloides/química , Encéfalo/metabolismo , Encéfalo/patología , Microscopía por Crioelectrón , Fragmentos de Péptidos/química
3.
J Mol Biol ; 436(4): 168441, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38199491

RESUMEN

Amyloid resistance is the inability or the reduced susceptibility of an organism to develop amyloidosis. In this study we have analysed the molecular basis of the resistance to systemic AApoAII amyloidosis, which arises from the formation of amyloid fibrils from apolipoprotein A-II (ApoA-II). The disease affects humans and animals, including SAMR1C mice that express the C allele of ApoA-II protein, whereas other mouse strains are resistant to development of amyloidosis due to the expression of other ApoA-II alleles, such as ApoA-IIF. Using cryo-electron microscopy, molecular dynamics simulations and other methods, we have determined the structures of pathogenic AApoAII amyloid fibrils from SAMR1C mice and analysed the structural effects of ApoA-IIF-specific mutational changes. Our data show that these changes render ApoA-IIF incompatible with the specific fibril morphologies, with which ApoA-II protein can become pathogenic in vivo.


Asunto(s)
Amiloide , Amiloidosis , Apolipoproteína A-II , Animales , Ratones , Amiloide/química , Amiloide/genética , Amiloidosis/genética , Amiloidosis/metabolismo , Apolipoproteína A-II/química , Apolipoproteína A-II/genética , Microscopía por Crioelectrón , Alelos , Simulación de Dinámica Molecular , Mutación , Ratones Mutantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA