Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Cell ; 79(2): 342-358.e12, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32645368

RESUMEN

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.


Asunto(s)
Calcineurina/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Biotinilación , Centrosoma/metabolismo , Simulación por Computador , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Receptor Notch1/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
2.
Nature ; 582(7810): 115-118, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494070

RESUMEN

During cell division, remodelling of the nuclear envelope enables chromosome segregation by the mitotic spindle1. The reformation of sealed nuclei requires ESCRTs (endosomal sorting complexes required for transport) and LEM2, a transmembrane ESCRT adaptor2-4. Here we show how the ability of LEM2 to condense on microtubules governs the activation of ESCRTs and coordinated spindle disassembly. The LEM motif of LEM2 binds BAF, conferring on LEM2 an affinity for chromatin5,6, while an adjacent low-complexity domain (LCD) promotes LEM2 phase separation. A proline-arginine-rich sequence within the LCD binds to microtubules and targets condensation of LEM2 to spindle microtubules that traverse the nascent nuclear envelope. Furthermore, the winged-helix domain of LEM2 activates the ESCRT-II/ESCRT-III hybrid protein CHMP7 to form co-oligomeric rings. Disruption of these events in human cells prevented the recruitment of downstream ESCRTs, compromised spindle disassembly, and led to defects in nuclear integrity and DNA damage. We propose that during nuclear reassembly LEM2 condenses into a liquid-like phase and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin and the spindle. The properties of LEM2 described here, and the homologous architectures of related inner nuclear membrane proteins7,8, suggest that phase separation may contribute to other critical envelope functions, including interphase repair8-13 and chromatin organization14-17.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Anafase , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Membrana Nuclear/química , Huso Acromático/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(38): E8900-E8908, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181294

RESUMEN

Cytokinetic abscission facilitates the irreversible separation of daughter cells. This process requires the endosomal-sorting complexes required for transport (ESCRT) machinery and is tightly regulated by charged multivesicular body protein 4C (CHMP4C), an ESCRT-III subunit that engages the abscission checkpoint (NoCut) in response to mitotic problems such as persisting chromatin bridges within the midbody. Importantly, a human polymorphism in CHMP4C (rs35094336, CHMP4CT232) increases cancer susceptibility. Here, we explain the structural and functional basis for this cancer association: The CHMP4CT232 allele unwinds the C-terminal helix of CHMP4C, impairs binding to the early-acting ESCRT factor ALIX, and disrupts the abscission checkpoint. Cells expressing CHMP4CT232 exhibit increased levels of DNA damage and are sensitized to several conditions that increase chromosome missegregation, including DNA replication stress, inhibition of the mitotic checkpoint, and loss of p53. Our data demonstrate the biological importance of the abscission checkpoint and suggest that dysregulation of abscission by CHMP4CT232 may synergize with oncogene-induced mitotic stress to promote genomic instability and tumorigenesis.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Predisposición Genética a la Enfermedad/genética , Inestabilidad Genómica/genética , Neoplasias/genética , Proteínas de Unión al Calcio/metabolismo , Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Cristalografía por Rayos X , Daño del ADN/genética , Replicación del ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Mitosis/genética , Fosforilación , Polimorfismo Genético , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(11): E2166-E2175, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28242692

RESUMEN

Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Alelos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mitosis/genética , Modelos Biológicos , Proteínas Nucleares/genética , Fenotipo , Unión Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/genética , Eliminación de Secuencia , Imagen de Lapso de Tiempo
5.
J Cell Sci ; 130(19): 3347-3359, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28751496

RESUMEN

DNA double-strand breaks are typically repaired through either the high-fidelity process of homologous recombination (HR), in which BRCA1 plays a key role, or the more error-prone process of non-homologous end joining (NHEJ), which relies on 53BP1. The balance between NHEJ and HR depends, in part, on whether 53BP1 predominates in binding to damage sites, where it protects the DNA ends from resection. The nucleoporin Nup153 has been implicated in the DNA damage response, attributed to a role in promoting nuclear import of 53BP1. Here, we define a distinct requirement for Nup153 in 53BP1 intranuclear targeting to damage foci and report that Nup153 likely facilitates the role of another nucleoporin, Nup50, in 53BP1 targeting. The requirement for Nup153 and Nup50 in promoting 53BP1 recruitment to damage foci induced by either etoposide or olaparib is abrogated in cells deficient for BRCA1 or its partner BARD1, but not in cells deficient for BRCA2. Together, our results further highlight the antagonistic relationship between 53BP1 and BRCA1, and place Nup153 and Nup50 in a molecular pathway that regulates 53BP1 function by counteracting BRCA1-mediated events.


Asunto(s)
Proteína BRCA1/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína BRCA1/genética , Células HeLa , Humanos , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética
6.
Blood ; 125(11): 1772-81, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25573989

RESUMEN

The mechanisms underlying tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML) patients lacking explanatory BCR-ABL1 kinase domain mutations are incompletely understood. To identify mechanisms of TKI resistance that are independent of BCR-ABL1 kinase activity, we introduced a lentiviral short hairpin RNA (shRNA) library targeting ∼5000 cell signaling genes into K562(R), a CML cell line with BCR-ABL1 kinase-independent TKI resistance expressing exclusively native BCR-ABL1. A customized algorithm identified genes whose shRNA-mediated knockdown markedly impaired growth of K562(R) cells compared with TKI-sensitive controls. Among the top candidates were 2 components of the nucleocytoplasmic transport complex, RAN and XPO1 (CRM1). shRNA-mediated RAN inhibition or treatment of cells with the XPO1 inhibitor, KPT-330 (Selinexor), increased the imatinib sensitivity of CML cell lines with kinase-independent TKI resistance. Inhibition of either RAN or XPO1 impaired colony formation of CD34(+) cells from newly diagnosed and TKI-resistant CML patients in the presence of imatinib, without effects on CD34(+) cells from normal cord blood or from a patient harboring the BCR-ABL1(T315I) mutant. These data implicate RAN in BCR-ABL1 kinase-independent imatinib resistance and show that shRNA library screens are useful to identify alternative pathways critical to drug resistance in CML.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , ARN Interferente Pequeño/genética , Transporte Activo de Núcleo Celular/genética , Benzamidas/farmacología , Línea Celular Tumoral , Supervivencia Celular , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl/genética , Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Humanos , Hidrazinas/farmacología , Mesilato de Imatinib , Células K562 , Carioferinas/antagonistas & inhibidores , Carioferinas/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Mutación , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal , Triazoles/farmacología , Ensayo de Tumor de Célula Madre , Proteína de Unión al GTP ran/antagonistas & inhibidores , Proteína de Unión al GTP ran/genética , Proteína Exportina 1
7.
J Biol Chem ; 289(25): 17541-52, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24764298

RESUMEN

The role of programmed cell death 4 (PDCD4) in tumor biology is context-dependent. PDCD4 is described as a tumor suppressor, but its coexpression with protein arginine methyltransferase 5 (PRMT5) promotes accelerated tumor growth. Here, we report that PDCD4 is methylated during nutrient deprivation. Methylation occurs because of increased stability of PDCD4 protein as well as increased activity of PRMT5 toward PDCD4. During nutrient deprivation, levels of methylated PDCD4 promote cell viability, which is dependent on an enhanced interaction with eIF4A. Upon recovery from nutrient deprivation, levels of methylated PDCD4 are regulated by phosphorylation, which controls both the localization and stability of methylated PDCD4. This study reveals that, in response to particular environmental cues, the role of PDCD4 is up-regulated and is advantageous for cell viability. These findings suggest that the methylated form of PDCD4 promotes tumor viability during nutrient deprivation, ultimately allowing the tumor to grow more aggressively.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas de Unión al ARN/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Arginina/genética , Arginina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Humanos , Metilación , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Fosforilación/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Regulación hacia Arriba/genética
8.
J Biol Chem ; 287(46): 38515-22, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23007389

RESUMEN

Interactions between Nup50 and soluble transport factors underlie the efficiency of certain nucleocytoplasmic transport pathways. The platform on which these interactions take place is important to building a complete understanding of nucleocytoplasmic trafficking. Nup153 is the nucleoporin that provides this scaffold for Nup50. Here, we have delineated requirements for the interaction between Nup153 and Nup50, revealing a dual interface. An interaction between Nup50 and a region in the unique N-terminal region of Nup153 is critical for the nuclear pore localization of Nup50. A second site of interaction is at the distal tail of Nup153 and is dependent on importin α. Both of these interactions involve the N-terminal domain of Nup50. The configuration of the Nup153-Nup50 partnership suggests that the Nup153 scaffold provides not just a means of pore targeting for Nup50 but also serves to provide a local environment that facilitates bringing Nup50 and importin α together, as well as other soluble factors involved in transport. Consistent with this, disruption of the Nup153-Nup50 interface decreases efficiency of nuclear import.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas Nucleares/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Cinética , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/química , Proteínas Nucleares/química , Conformación Proteica , Estructura Terciaria de Proteína , alfa Carioferinas/química
9.
Curr Opin Cell Biol ; 18(1): 108-16, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16364623

RESUMEN

The membrane system that encloses genomic DNA is referred to as the nuclear envelope. However, with emerging roles in signaling and gene expression, these membranes clearly serve as more than just a physical barrier separating the nucleus and cytoplasm. Recent progress in our understanding of nuclear envelope architecture and composition has also revealed an intriguing connection between constituents of the nuclear envelope and human disease, providing further impetus to decipher this cellular structure and the dramatic remodeling process it undergoes with each cell division.


Asunto(s)
Núcleo Celular/metabolismo , Membrana Nuclear/química , Membrana Nuclear/fisiología , Animales , Humanos , Modelos Biológicos
10.
Curr Opin Cell Biol ; 85: 102230, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37660480

RESUMEN

The canonical appearance of the nucleus depends on constant adaptation and remodeling of the nuclear envelope in response to changing biomechanical forces and metabolic demands. Dynamic events at the nuclear envelope play a vital role in supporting key nuclear functions as well as conferring plasticity to this organelle. Moreover, imbalance of these dynamic processes is emerging as a central feature of disease etiology. This review focuses on recent advances that shed light on the myriad events at the nuclear envelope that contribute to resilience and flexibility in nuclear architecture.


Asunto(s)
Membrana Nuclear , Resiliencia Psicológica , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo
11.
Elife ; 122023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37772788

RESUMEN

The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery mediates the membrane fission step that completes cytokinetic abscission and separates dividing cells. Filaments composed of ESCRT-III subunits constrict membranes of the intercellular bridge midbody to the abscission point. These filaments also bind and recruit cofactors whose activities help execute abscission and/or delay abscission timing in response to mitotic errors via the NoCut/Abscission checkpoint. We previously showed that the ESCRT-III subunit IST1 binds the cysteine protease Calpain-7 (CAPN7) and that CAPN7 is required for both efficient abscission and NoCut checkpoint maintenance (Wenzel et al., 2022). Here, we report biochemical and crystallographic studies showing that the tandem microtubule-interacting and trafficking (MIT) domains of CAPN7 bind simultaneously to two distinct IST1 MIT interaction motifs. Structure-guided point mutations in either CAPN7 MIT domain disrupted IST1 binding in vitro and in cells, and depletion/rescue experiments showed that the CAPN7-IST1 interaction is required for (1) CAPN7 recruitment to midbodies, (2) efficient abscission, and (3) NoCut checkpoint arrest. CAPN7 proteolytic activity is also required for abscission and checkpoint maintenance. Hence, IST1 recruits CAPN7 to midbodies, where its proteolytic activity is required to regulate and complete abscission.


Asunto(s)
Calpaína , Complejos de Clasificación Endosomal Requeridos para el Transporte , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Calpaína/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteolisis , Citocinesis
12.
Heliyon ; 8(12): e12147, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36619427

RESUMEN

Formation of robust actomyosin stress fibers (SF) in response to cell stretch plays a key role in the transfer of information from the cytoplasm into the nucleus. Actin/LINC/Lamin (ALL) nuclear lines provide mechanical linkage between the actin cytoskeleton and the lamin nucleoskeleton across the nuclear envelope. To understand the establishment of ALL lines, we used live cell imaging of cells exposed to cyclic stretch. We discovered that nuclear pore complexes (NPCs) concentrate along ALL lines that are generated in response to uniaxial cyclic stretch. The ALL-associated NPCs display increased fluorescence intensity of nucleoporins Pom121, TPR and Nup153 relative to nucleoporins that are distal to the ALL lines. Here we test the hypothesis that a LINC complex component of ALL lines, SUN1 is involved in the integration of NPCs with ALL lines. We generated CRISPR SUN1 knockdown and knockout cell lines and show that SUN1 is essential for normal integration of NPCs to ALL lines. Loss or elimination of SUN1 significantly diminishes NPC/ALL line integration, demonstrating a key role for SUN1 in the recruitment or stabilization of NPCs to a discrete subdomain of the nuclear envelope at ALL lines. This work provides new insight into the mechanism by which cells respond to mechanical force through nuclear envelope remodeling.

13.
Elife ; 112022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107470

RESUMEN

The 12 related human ESCRT-III proteins form filaments that constrict membranes and mediate fission, including during cytokinetic abscission. The C-terminal tails of polymerized ESCRT-III subunits also bind proteins that contain Microtubule-Interacting and Trafficking (MIT) domains. MIT domains can interact with ESCRT-III tails in many different ways to create a complex binding code that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively and quantitatively mapped the interactions between all known ESCRT-III tails and 19 recombinant human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, and discovered 18 previously unreported interactions. We also report the crystal structure of the SPASTIN MIT domain in complex with the IST1 C-terminal tail. Three MIT enzymes were studied in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions with their specific ESCRT-III binding partners (SPASTIN-IST1, KATNA1-CHMP3, and CAPN7-IST1), (2) function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the 'NoCut' abscission checkpoint (SPASTIN and CAPN7). Our studies define the human MIT-ESCRT-III interactome, identify new factors and activities required for cytokinetic abscission and its regulation, and provide a platform for analyzing ESCRT-III and MIT cofactor interactions in all ESCRT-mediated processes.


Asunto(s)
Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Citocinesis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Microtúbulos/metabolismo , Espastina/metabolismo
14.
Mol Biol Cell ; 33(13): ar117, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36044344

RESUMEN

Assembly of the nucleus following mitosis requires rapid and coordinate recruitment of diverse constituents to the inner nuclear membrane. We have identified an unexpected role for the nucleoporin Nup153 in promoting the continued addition of a subset of nuclear envelope (NE) proteins during initial expansion of nascent nuclei. Specifically, disrupting the function of Nup153 interferes with ongoing addition of B-type lamins, lamin B receptor, and SUN1 early in telophase, after the NE has initially enclosed chromatin. In contrast, effects on lamin A and SUN2 were minimal, pointing to differential requirements for the ongoing targeting of NE proteins. Further, distinct mistargeting phenotypes arose among the proteins that require Nup153 for NE targeting. Thus, disrupting the function of Nup153 in nuclear formation reveals several previously undescribed features important for establishing nuclear architecture: 1) a role for a nuclear basket constituent in ongoing recruitment of nuclear envelope components, 2) two functionally separable phases of NE formation in mammalian cells, and 3) distinct requirements of individual NE residents for continued targeting during the expansion phase of NE reformation.


Asunto(s)
Membrana Nuclear , Proteínas de Complejo Poro Nuclear , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Lamina Tipo A/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
15.
Elife ; 102021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346309

RESUMEN

The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission.


When a cell divides, it must first carefully duplicate its genetic information and package these copies into compartments housed in the two new cells. Errors in this process lead to genetic mistakes that trigger cancer or other harmful biological events. Quality control checks exist to catch errors before it is too late. This includes a final 'abscission' checkpoint right before the end of division, when the two new cells are still connected by a thin membrane bridge. If cells fail to pass this 'no cut' checkpoint, they delay severing their connection until the mistake is fixed. A group of proteins called ESCRTs is responsible for splitting the two cells apart if nothing is amiss. The abscission checkpoint blocks this process by altering certain proteins in the ESCRT complex, but exactly how this works is not yet clear. To find out more, Williams et al. imaged ESCRT factors in a new experimental system in which the abscission checkpoint is active in many cells. This showed that, in this context, certain ESCRT components were rerouted from the thread of membrane between the daughter cells to previously unknown structures, which Williams et al. named abscission checkpoint bodies. These entities also sequestered other factors that participate in the abscission checkpoint and factors that contribute to gene expression. These results are key to better understand how cells regulate their division; in particular, they provide a new framework to explore when this process goes wrong and contributes to cancer.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , División Celular/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación de la Expresión Génica/fisiología , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Humanos , Interferencia de ARN , ARN Interferente Pequeño , Análisis de la Célula Individual
16.
Mol Biol Cell ; 31(16): 1774-1787, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31967947

RESUMEN

Mechanical stimulation of fibroblasts induces changes in the actin cytoskeleton including stress fiber (SF) reinforcement and realignment. Here we characterize the nuclear response to mechanical stimulation (uniaxial cyclic stretch). Using fluorescence microscopy and quantitative image analysis we find that stretch-induced nuclear elongation and alignment perpendicular to the stretch vector are dependent on formin-regulated actin polymerization. The mechanosensitive transcription factors Yes-associated protein/Transcriptional coactivator with PDZ domain (YAP/TAZ) and myocardin-related transcription factor (MRTF-A, also known as MKL1 and MAL1) accumulate in the nucleus and activate their target genes in response to uniaxial cyclic stretch. We show that transmembrane actin nuclear (TAN) lines are induced by stretch stimulation and nuclear envelope (NE) proteins including nesprins, SUN2, and lamins form Linkers of the Nucleoskeleton and Cytoskeleton (LINC) complexes aligned with actin SFs. These NE structures are altered by pharmacological treatments (Cytochalasin D and Jasplakinolide) or genetic disruption (zyxin gene deletion) that alter actin, and their persistence requires maintenance of stretch stimulation. Nuclear pore complexes (NPCs) accumulate at TAN lines providing a potential mechanism for linking mechanical cues to NPC function.


Asunto(s)
Mecanorreceptores/metabolismo , Poro Nuclear/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Fibras de Estrés/metabolismo , Estrés Mecánico , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
17.
Dev Cell ; 5(3): 487-98, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12967567

RESUMEN

Nuclear envelope breakdown is a critical step in the cell cycle of higher eukaryotes. Although integral membrane proteins associated with the nuclear membrane have been observed to disperse into the endoplasmic reticulum at mitosis, the mechanisms involved in this reorganization remain to be fully elucidated. Here, using Xenopus extracts, we report a role for the COPI coatomer complex in nuclear envelope breakdown, implicating vesiculation as an important step. We have found that a nuclear pore protein, Nup153, plays a critical role in directing COPI to the nuclear membrane at mitosis and that this event provides feedback to other aspects of nuclear disassembly. These results provide insight into how key steps in nuclear division are orchestrated.


Asunto(s)
Ciclo Celular/fisiología , Proteína Coat de Complejo I/fisiología , Membrana Nuclear/fisiología , Proteínas de Complejo Poro Nuclear/fisiología , Factores de Ribosilacion-ADP/metabolismo , Animales , Western Blotting , Proteína Coatómero/metabolismo , Ciclinas/metabolismo , Células HeLa/metabolismo , Humanos , Inmunohistoquímica , Técnicas In Vitro , Laminas/metabolismo , Microscopía Confocal , Óvulo , Fragmentos de Péptidos , Pruebas de Precipitina , Proteínas Recombinantes/química , Tinción con Nitrato de Plata , Xenopus , Dedos de Zinc/fisiología
18.
Mol Biol Cell ; 17(2): 760-9, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16314393

RESUMEN

When higher eukaryotic cells transition into mitosis, the nuclear envelope, nuclear pore complexes, and nuclear lamina are coordinately disassembled. The COPI coatomer complex, which plays a major role in membrane remodeling at the Golgi, has been implicated in the process of nuclear envelope breakdown and requires interactions at the nuclear pore complex for recruitment to this new site of action at mitosis. Nup153, a resident of the nuclear pore basket, was found to be involved in COPI recruitment, but the molecular nature of the interface between COPI and the nuclear pore has not been fully elucidated. To better understand what occurs at the nuclear pore at this juncture, we have probed the role of the nucleoporin Nup358/RanBP2. Nup358 contains a repetitive zinc finger domain with overall organization similar to a region within Nup153 that is critical to COPI association, yet inspection of these two zinc finger domains reveals features that also clearly distinguish them. Here, we found that the Nup358 zinc finger domain, but not a zinc finger domain from an unrelated protein, binds to COPI and dominantly inhibits progression of nuclear envelope breakdown in an assay that robustly recapitulates this process in vitro. Moreover, the Nup358 zinc finger domain interferes with COPI recruitment to the nuclear rim. Consistent with a role for this pore protein in coordinating nuclear envelope breakdown, Nup358-specific antibodies impair nuclear disassembly. Significantly, targeting either Nup153 or Nup358 for inhibition perturbs nuclear envelope breakdown, supporting a model in which these nucleoporins play nonredundant roles, perhaps contributing to COPI recruitment platforms on both the nuclear and cytoplasmic faces of the pore. We found that an individual zinc finger is the minimal interface for COPI association, although tandem zinc fingers are optimal. These results provide new information about the critical components of nuclear membrane remodeling and lay the foundation for a better understanding of how this process is regulated.


Asunto(s)
Mitosis/fisiología , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiología , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/fisiología , Secuencia de Aminoácidos , Animales , Proteína Coat de Complejo I/metabolismo , Proteína Coat de Complejo I/fisiología , Proteína Coatómero/metabolismo , Secuencia de Consenso , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Membrana Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/metabolismo , Mapeo de Interacción de Proteínas , Alineación de Secuencia , Xenopus , Dedos de Zinc
19.
Curr Biol ; 12(13): R461-3, 2002 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-12121638

RESUMEN

Efficient eukaryotic gene expression hinges on the ability of mRNA to travel from the nucleus to its cytoplasmic destination. Recent work lends insight into features that allow diverse mRNAs to be recognized by shared export machinery.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Animales , Humanos , Fosfoproteínas/metabolismo , ARN Nuclear Pequeño/metabolismo
20.
J Mol Biol ; 363(1): 39-50, 2006 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-16962132

RESUMEN

Nucleoporins represent the molecular building blocks of nuclear pore complexes (NPCs), which mediate facilitated macromolecular trafficking between the cytoplasm and nucleus of eukaryotic cells. Phenylalanine-glycine (FG) repeat motifs are found in about one-third of the nucleoporins, and they provide major binding or docking sites for soluble transport receptors. We have shown recently that localization of the FG-repeat domains of vertebrate nucleoporins Nup153 and Nup214 within the NPC is influenced by its transport state. To test whether chemical effectors, such as calcium and ATP, influence the localization of the FG-repeat domains of Nup153 and Nup214 within the NPC, we performed immuno-electron microscopy of Xenopus oocyte nuclei using domain-specific antibodies against Nup153 and Nup214, respectively. Ca2+ and ATP are known to induce conformational changes in the NPC architecture, especially at the cytoplasmic face, but also at the nuclear basket of the NPC. We have found concentrations of calcium in the micromolar range or 1 mM ATP in the surrounding buffer leaves the spatial distribution of the FG-repeat of Nup153 and Nup214 largely unchanged. In contrast, ATP depletion, calcium store depletion by EGTA or thapsigargin, and high concentrations of divalent cation (i.e. 2 mM Ca2+ and 2 mM Mg2+) constrain the distribution of the FG-repeats of Nup153 and Nup214. Our data suggest that the location of the FG-repeat domains of Nup153 and Nup214 is sensitive to chemical changes within the near-field environment of the NPC.


Asunto(s)
Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Animales , Calcio/metabolismo , Estructura Terciaria de Proteína , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA