Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Dev Biol ; 13: 23, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23714426

RESUMEN

BACKGROUND: The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. DESCRIPTION: We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. CONCLUSION: The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses.


Asunto(s)
Cara/anatomía & histología , Cráneo/anatomía & histología , Pez Cebra/anatomía & histología , Animales
2.
Evol Dev ; 14(4): 326-37, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22765204

RESUMEN

Oceanic threespine sticklebacks have repeatedly and independently evolved new morphologies upon invasions of freshwater habitats. A consistent derived feature of the freshwater form across populations and geography is a shape change of the opercle, a large early developing facial bone. We show that the principal multivariate axis describing opercle shape development from the young larva to the full adult stage of oceanic fish matches the principal axis of evolutionary change associated with relocation from the oceanic to freshwater habitat. The opercle phenotype of freshwater adults closely resembles the phenotype of the bone in juveniles. Thus, evolution to the freshwater condition is in large part by truncation of development; the freshwater fish do not achieve the full ancestral adult bone shape. Additionally, the derived state includes dissociated ontogenetic changes. Dissociability may reflect an underlying modular pattern of opercle development, and facilitate flexibility of morphological evolution.


Asunto(s)
Evolución Biológica , Ecosistema , Fenotipo , Smegmamorpha/fisiología , Animales , Agua Dulce , Agua de Mar
3.
Genesis ; 48(8): 505-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20506187

RESUMEN

We report the expression pattern and construction of a transgenic zebrafish line for a transcription factor involved in otic vesicle formation and skeletogenesis. The zinc finger transcription factor sp7 (formerly called osterix) is reported as a marker of osteoblasts. Using bacterial artificial chromosome (BAC)-mediated transgenesis, we generated a zebrafish transgenic line for studying skeletal development, Tg(sp7:EGFP)b1212. Using a zebrafish BAC, EGFP was introduced downstream of the regulatory regions of sp7 and injected into one cell-stage embryos. In this transgenic line, GFP expression reproduces endogenous sp7 gene expression in the otic placode and vesicle, and in forming skeletal structures. GFP-positive cells were also detected in adult fish, and were found associated with regenerating fin rays post-amputation. This line provides an essential tool for the further study of zebrafish otic vesicle formation and the development and regeneration of the skeleton.


Asunto(s)
Regeneración Ósea/genética , Organogénesis/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Aletas de Animales/fisiología , Aletas de Animales/cirugía , Animales , Animales Modificados Genéticamente , Condrocitos/metabolismo , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Oído/embriología , Oído/crecimiento & desarrollo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Larva/genética , Larva/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción Sp7 , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
4.
Evolution ; 66(2): 419-34, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22276538

RESUMEN

Evolution of similar phenotypes in independent populations is often taken as evidence of adaptation to the same fitness optimum. However, the genetic architecture of traits might cause evolution to proceed more often toward particular phenotypes, and less often toward others, independently of the adaptive value of the traits. Freshwater populations of Alaskan threespine stickleback have repeatedly evolved the same distinctive opercle shape after divergence from an oceanic ancestor. Here we demonstrate that this pattern of parallel evolution is widespread, distinguishing oceanic and freshwater populations across the Pacific Coast of North America and Iceland. We test whether this parallel evolution reflects genetic bias by estimating the additive genetic variance-covariance matrix (G) of opercle shape in an Alaskan oceanic (putative ancestral) population. We find significant additive genetic variance for opercle shape and that G has the potential to be biasing, because of the existence of regions of phenotypic space with low additive genetic variation. However, evolution did not occur along major eigenvectors of G, rather it occurred repeatedly in the same directions of high evolvability. We conclude that the parallel opercle evolution is most likely due to selection during adaptation to freshwater habitats, rather than due to biasing effects of opercle genetic architecture.


Asunto(s)
Evolución Biológica , Variación Genética , Branquias/anatomía & histología , Smegmamorpha/anatomía & histología , Smegmamorpha/genética , Alaska , Animales , Ecosistema , Agua Dulce , Oregon , Fenotipo
5.
PLoS One ; 5(3): e9475, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20221441

RESUMEN

The morphologies of individual bones are crucial for their functions within the skeleton, and vary markedly during evolution. Recent studies have begun to reveal the detailed molecular genetic pathways that underlie skeletal morphogenesis. On the other hand, understanding of the process of morphogenesis itself has not kept pace with the molecular work. We examined, through an extended period of development in zebrafish, how a prominent craniofacial bone, the opercle (Op), attains its adult morphology. Using high-resolution confocal imaging of the vitally stained Op in live larvae, we show that the bone initially appears as a simple linear spicule, or spur, with a characteristic position and orientation, and lined by osteoblasts that we visualize by transgenic labeling. The Op then undergoes a stereotyped sequence of shape transitions, most notably during the larval period occurring through three weeks postfertilization. New shapes arise, and the bone grows in size, as a consequence of anisotropic addition of new mineralized bone matrix along specific regions of the pre-existing bone surfaces. We find that two modes of matrix addition, spurs and veils, are primarily associated with change in shape, whereas a third mode, incremental banding, largely accounts for growth in size. Furthermore, morphometric analyses show that shape development and growth follow different trajectories, suggesting separate control of bone shape and size. New osteoblast arrangements are associated with new patterns of matrix outgrowth, and we propose that fine developmental regulation of osteoblast position is a critical determinant of the spatiotemporal pattern of morphogenesis.


Asunto(s)
Biología Evolutiva/métodos , Cráneo/anatomía & histología , Cráneo/embriología , Cráneo/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Desarrollo Óseo , Huesos/anatomía & histología , Huesos/embriología , Embrión no Mamífero , Proteínas Fluorescentes Verdes/metabolismo , Morfogénesis , Cresta Neural/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Factores de Tiempo , Transgenes , Pez Cebra
6.
Proc Natl Acad Sci U S A ; 102(16): 5791-6, 2005 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-15824312

RESUMEN

How do developmental mechanisms evolve to control changing skeletal morphology, the shapes and sizes of individual bones? We address this question with studies of the opercle (OP), a large facial bone that has undergone marked morphological evolution in the ray-finned fish. Attributes for developmental analysis motivated us to examine how OP shape and size evolve and develop in threespine sticklebacks, a model system for understanding vertebrate evolution. We find that when Alaskan anadromous fish take up permanent residence in lakes, they evolve smaller and reshaped OPs. The change is a reduction in the amount of bone laid down along one body axis, and it arises at or shortly after the onset of OP development. A quantitative trait locus is present on linkage group 19 that contributes in a major way to this phenotype.


Asunto(s)
Evolución Biológica , Huesos Faciales/anatomía & histología , Smegmamorpha/anatomía & histología , Smegmamorpha/genética , Alaska , Animales , Desarrollo Óseo , Morfogénesis , Fenotipo
7.
Development ; 130(7): 1339-51, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12588850

RESUMEN

Endothelin 1 (Edn1), a secreted peptide expressed ventrally in the primordia of the zebrafish pharyngeal arches, is required for correct patterning of pharyngeal cartilage development. We have studied mutants and morpholino-injected larvae to examine the role of the Edn1 signal in patterning anterior pharyngeal arch bone development during the first week after fertilization. We observe a remarkable variety of phenotypic changes in dermal bones of the anterior arches after Edn1 reduction, including loss, size reduction and expansion, fusion and shape change. Notably, the changes that occur appear to relate to the level of residual Edn1. Mandibular arch dermal bone fusions occur with severe Edn1 loss. In the dorsal hyoid arch, the dermal opercle bone is usually absent when Edn1 is severely reduced and is usually enlarged when Edn1 is only mildly reduced, suggesting that the same signal can act both positively and negatively in controlling development of a single bone. Position also appears to influence the changes: a branchiostegal ray, a dermal hyoid bone normally ventral to the opercle, can be missing in the same arch where the opercle is enlarged. We propose that Edn1 acts as a morphogen; different levels pattern specific positions, shapes and sizes of bones along the dorso-ventral axis. Changes involving Edn1 may have occurred during actinopterygian evolution to produce the efficient gill-pumping opercular apparatus of teleosts.


Asunto(s)
Huesos/embriología , Región Branquial/embriología , Endotelina-1/genética , Proteínas de Pez Cebra , Pez Cebra/embriología , Animales , Cartílago/embriología , Endotelina-1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cabeza/embriología , Hueso Hioides/embriología , Mandíbula/embriología , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA