Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biochem Biophys Res Commun ; 559: 168-175, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33945994

RESUMEN

Transforming growth factor (TGF)ß/activin superfamily regulates diverse biological processes including germ layer specification and axis patterning in vertebrates. TGFß/activin leads to phosphorylation of Smad2 and Smad3, followed by regulation of their target genes. Activin treatment also induces the essential organizer gene chordin (chrd). The involvement of Smad2/3 in chrd expression has been unclear as to whether Smad2/3 involvement is direct or indirect and whether any cis-acting response elements for Smad2/3 are present in the proximal or distal regions of its promoter. In the present study, we isolated the -2250 bps portion of the chrd promoter, showing that it contained Smad2/3 direct binding sites at its distal portion, separate from the proximal locations of other organizer genes, goosecoid and cerberus. The pattern of transcription activation for the promoter (-2250 bps) was indistinguishable from that of the endogenous chrd in gastrula Xenopus embryos. Reporter gene assays and site-directed mutagenesis analysis of the chrd promoter mapped two active activin/Smad response elements (ARE1 and ARE2) for Smad2 and Smad3. For a differential chrd induction, Smad2 acted on both ARE1 and ARE2, but Smad3 was only active for ARE2. Collectively, the results demonstrate that the distal region of chrd promoter contains the direct binding cis-acting elements for Smad2 and Smad3, which differentially modulate chrd transcription in gastrula Xenopus embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Gástrula/embriología , Gástrula/metabolismo , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Smad2/genética , Proteína smad3/genética , Activación Transcripcional , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
2.
Sci Rep ; 14(1): 8922, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637565

RESUMEN

The Bmp/Smad1 pathway plays a crucial role in developmental processes and tissue homeostasis. Mitogen-activated protein kinase (Mapk)/Erk mediated phosphorylation of Smad1 in the linker region leads to Smad1 degradation, cytoplasmic retention and inhibition of Bmp/Smad1 signaling. While Fgf/Erk pathway has been documented to inhibit Bmp/Smad1 signaling, several studies also suggests the cooperative interaction between these two pathways in different context. However, the precise role and molecular pathway of this collaborative interaction remain obscure. Here, we identified Xbra induced by Fgf/Erk signaling as a factor in a protective mechanism for Smad1. Xbra physically interacted with the linker region phosphorylated Smad1 to make Xbra/Smad1/Smad4 trimeric complex, leading to Smad1 nuclear localization and protecting it from ubiquitin-mediated proteasomal degradation. This interaction of Xbra/Smad1/Smad4 led to sustained nuclear localization of Smad1 and the upregulation of lateral mesoderm genes, while concurrently suppression of neural and blood forming genes. Taken together, the results suggests Xbra-dependent cooperative interplays between Fgf/Erk and Bmp/Smad1 signaling during lateral mesoderm specification in Xenopus embryos.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Transducción de Señal , Animales , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema Nervioso/metabolismo , Fosforilación , Proteína Smad1/genética , Proteína Smad1/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
3.
Cells ; 12(6)2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36980215

RESUMEN

The reciprocal inhibition between two signaling centers, the Spemann organizer (dorsal mesoderm) and ventral region (mesoderm and ectoderm), collectively regulate the overall development of vertebrate embryos. Each center expresses key homeobox transcription factors (TFs) that directly control target gene transcription. Goosecoid (Gsc) is an organizer (dorsal mesoderm)-specific TF known to induce dorsal fate and inhibit ventral/ectodermal specification. Ventx1.1 (downstream of Bmp signaling) induces the epidermal lineage and inhibits dorsal organizer-specific genes from the ventral region. Chordin (Chrd) is an organizer-specific secreted Bmp antagonist whose expression is primarily activated by Gsc. Alternatively, chrd expression is repressed by Bmp/Ventx1.1 in the ventral/epidermal region. However, the regulatory mechanisms underlying the transcription mediated by Gsc and Ventx1.1 remain elusive. Here, we found that the chrd promoter contained two cis-acting response elements that responded negatively to Ventx1.1 and positively to Gsc. In the ventral/ectodermal region, Ventx1.1 was directly bound to the Ventx1.1 response element (VRE) and inhibited chrd transcription. In the organizer region, Gsc was bound to the Gsc response elements (GRE) to activate chrd transcription. The Gsc-mediated positive response on the chrd promoter completely depended on another adjacent Wnt response cis-acting element (WRE), which was the TCF7 (also known as Tcf1) binding element. Site-directed mutagenesis of VRE, GRE, or WRE completely abolished the repressive or activator activity of Ventx1.1 and Gsc, respectively. The ChIP-PCR results confirmed the direct binding of Ventx1.1 and Gsc/Tcf7 to VRE and GRE/WRE, respectively. These results demonstrated that chrd expression is oppositely modulated by homeobox TFs, Ventx1.1, and Gsc/Tcf7 during the embryonic patterning of Xenopus gastrula.


Asunto(s)
Gástrula , Glicoproteínas , Proteína Goosecoide , Factores de Transcripción , Proteínas de Xenopus , Xenopus laevis , Animales , Gástrula/metabolismo , Genes Homeobox , Proteína Goosecoide/genética , Proteína Goosecoide/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Glicoproteínas/metabolismo
4.
Front Cell Dev Biol ; 10: 800181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127683

RESUMEN

The motility of endometrial stromal cells (ESCs) contributes to the restoration of the endometrial functional layer and subsequently supports the trophoblast invasion during early pregnancy. Following ESCs differentiation through decidualization in response to progesterone during the menstrual cycle and embryo implantation, decidualized ESCs (D-ESCs) have greater motility and invasive activity. The human proinsulin-connecting peptide (C-peptide) is produced in equimolar amounts during the proteolysis of insulin in pancreatic ß-cells. However, the function of C-peptide in the cellular motility of the human endometrium remains unexamined. In the present study, C-peptide was identified as a determinant of undecidualized human endometrial stromal cells (UnD-ESCs) migration. C-peptide promoted the migration and invasion of UnD-ESCs and trophoblast-derived Jeg3 cells, but not that of ESCs post decidualization, a functional and biochemical differentiation of UnD-ESCs. Both Akt and protein phosphatase 1 regulated ß-catenin phosphorylation in UnD-ESCs, not D-ESCs, thereby promoting ß-catenin nuclear translocation in C-peptide-treated UnD-ESCs. C-peptide was also observed to increase matrix metallopeptidase-9 (MMP9) activity by increasing MMP9 expression and decreasing the expression of metallopeptidase inhibitor 1 (TIMP1) and TIMP3. Their expression was modulated by the direct binding of ß-catenin in the regulatory region of the promoter of MMP9, TIMP1, and TIMP3. Inhibition of either ß-catenin or MMP9 dampened C-peptide-enhanced migration in UnD-ESCs. Together, these findings suggest that C-peptide levels are critical for the regulation of UnD-ESC migration, providing evidence for the association between C-peptide levels and the failure rate of trophoblast invasion by inducing abnormal migration in UnD-ESCs in hyperinsulinemia or PCOS patients.

5.
Cells ; 11(18)2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36139370

RESUMEN

Premature ovarian insufficiency (POI) is a typical disorder of amenorrhea that lasts for a minimum of four months in women < 40 years old and is typically characterized by reduced estrogen levels and elevated serum concentrations of follicle-stimulating hormone. We collected urine samples from two participant cohorts from Gil Hospital of Gachon University (Incheon, Korea): a sequencing cohort of 19 participants (seven patients with POI (POI patients without Turner syndrome), seven patients with Turner syndrome (POI patients with Turner syndrome), and five control individuals (age-matched controls with confirmed ovarian sufficiency)) and a validation cohort of 46 participants (15 patients with POI, 11 patients with Turner syndrome, and 20 control individuals). Among differentially expressed miRNAs, hsa-miR-4516 was significantly upregulated in patients with POI in both cohorts, independent of the presence of Turner syndrome. Moreover, the upregulation of miR-4516 was confirmed in the ovary-but not in the uterus-of a cyclophosphamide and busulfan-induced POI mouse model. This was accompanied by a decrease in STAT3 protein level, a predicted target of miR-4516, via miRTarBase2020. Our study provides compelling evidence that miR-4516 is highly expressed in patients with POI and POI mouse models, suggesting that miR-4516 is a diagnostic marker of POI.


Asunto(s)
Exosomas , MicroARNs , Insuficiencia Ovárica Primaria , Síndrome de Turner , Animales , Biomarcadores , Busulfano , Ciclofosfamida , Estrógenos , Femenino , Hormona Folículo Estimulante , Humanos , Ratones , MicroARNs/genética , Insuficiencia Ovárica Primaria/genética , Factor de Transcripción STAT3 , Síndrome de Turner/genética
6.
Front Cell Dev Biol ; 9: 806258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35174167

RESUMEN

Guanine nucleotide exchange factors (GEFs) activate GTPases by stimulating the release of guanosine diphosphate to permit the binding of guanosine triphosphate. ARHGEF3 or XPLN (exchange factor found in platelets, leukemic, and neuronal tissues) is a selective guanine nucleotide exchange factor for Rho GTPases (RhoGEFs) that activates RhoA and RhoB but not RhoC, RhoG, Rac1, or Cdc42. ARHGEF3 contains the diffuse B-cell lymphoma homology and pleckstrin homology domains but lacks similarity with other known functional domains. ARHGEF3 also binds the mammalian target of rapamycin complex 2 (mTORC2) and subsequently inhibits mTORC2 and Akt. In vivo investigation has also indicated the communication between ARHGEF3 and autophagy-related muscle pathologies. Moreover, studies on genetic variation in ARHGEF3 and genome-wide association studies have predicted exciting novel roles of ARHGEF3 in controlling bone mineral density, platelet formation and differentiation, and Hirschsprung disease. In conclusion, we hypothesized that additional biochemical and functional studies are required to elucidate the detailed mechanism of ARHGEF3-related pathologies and therapeutics.

7.
Front Cell Dev Biol ; 9: 672890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041247

RESUMEN

Premature ovarian insufficiency (POI) is the loss of normal ovarian function before the age of 40 years, a condition that affects approximately 1% of women under 40 years old and 0.1% of women under 30 years old. It is biochemically characterized by amenorrhea with hypoestrogenic and hypergonadotropic conditions, in some cases, causing loss of fertility. Heterogeneity of POI is registered by genetic and non-genetic causes, such as autoimmunity, environmental toxins, and chemicals. The identification of possible causative genes and selection of candidate genes for POI confirmation remain to be elucidated in cases of idiopathic POI. This review discusses the current understanding and future prospects of heterogeneous POI. We focus on the genetic basis of POI and the recent studies on non-coding RNA in POI pathogenesis as well as on animal models of POI pathogenesis, which help unravel POI mechanisms and potential targets. Despite the latest discoveries, the crosstalk among gene regulatory networks and the possible therapies targeting the same needs to explore in near future.

8.
Cells ; 10(10)2021 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-34685759

RESUMEN

Inhibition of the bone morphogenetic proteins (BMPs) is the primary step toward neuroectoderm formation in vertebrates. In this process, the Spemann organizer of the dorsal mesoderm plays a decisive role by secreting several extracellular BMP inhibitors such as Chordin (Chrd). Chrd physically interacts with BMP proteins and inhibits BMP signaling, which triggers the expression of neural-specific transcription factors (TFs), including Foxd4l1.1. Thus, Chrd induces in a BMP-inhibited manner and promotes neuroectoderm formation. However, the regulatory feedback mechanism of Foxd4l1.1 on mesodermal genes expression during germ-layer specification has not been fully elucidated. In this study, we investigated the regulatory mechanism of Foxd4l1.1 on chrd (a mesodermal gene). We demonstrate that Foxd4l1.1 inhibits chrd expression during neuroectoderm formation in two ways: First, Foxd4l1.1 directly binds to FRE (Foxd4l1.1 response elements) within the chrd promoter region to inhibit transcription. Second, Foxd4l1.1 physically interacts with Smad2 and Smad3, and this interaction blocks Smad2 and Smad3 binding to activin response elements (AREs) within the chrd promoter. Site-directed mutagenesis of FRE within the chrd(-2250) promoter completely abolished repressor activity of the Foxd4l1.1. RT-PCR and reporter gene assay results indicate that Foxd4l1.1 strongly inhibits mesoderm- and ectoderm-specific marker genes to maintain neural fate. Altogether, these results suggest that Foxd4l1.1 negatively regulates chrd transcription by dual mechanism. Thus, our study demonstrates the existence of precise reciprocal regulation of chrd transcription during neuroectoderm and mesoderm germ-layer specification in Xenopus embryos.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Transcripción Genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Activinas/metabolismo , Animales , Proteínas de Unión al ADN/química , Ectodermo/metabolismo , Embrión no Mamífero/metabolismo , Genes Reporteros , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mesodermo/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Elementos de Respuesta/genética , Proteínas Smad/metabolismo , Proteínas de Xenopus/química
9.
Fluids Barriers CNS ; 18(1): 31, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233705

RESUMEN

BACKGROUND: Cerebrospinal fluid (CSF) is an ultra-filtrated colorless brain fluid that circulates within brain spaces like the ventricular cavities, subarachnoid space, and the spine. Its continuous flow serves many primary functions, including nourishment, brain protection, and waste removal. MAIN BODY: The abnormal accumulation of CSF in brain cavities triggers severe hydrocephalus. Accumulating evidence had indicated that synchronized beats of motile cilia (cilia from multiciliated cells or the ependymal lining in brain ventricles) provide forceful pressure to generate and restrain CSF flow and maintain overall CSF circulation within brain spaces. In humans, the disorders caused by defective primary and/or motile cilia are generally referred to as ciliopathies. The key role of CSF circulation in brain development and its functioning has not been fully elucidated. CONCLUSIONS: In this review, we briefly discuss the underlying role of motile cilia in CSF circulation and hydrocephalus. We have reviewed cilia and ciliated cells in the brain and the existing evidence for the regulatory role of functional cilia in CSF circulation in the brain. We further discuss the findings obtained for defective cilia and their potential involvement in hydrocephalus. Furthermore, this review will reinforce the idea of motile cilia as master regulators of CSF movements, brain development, and neuronal diseases.


Asunto(s)
Encéfalo/fisiología , Líquido Cefalorraquídeo/fisiología , Cilios/fisiología , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/fisiopatología , Animales , Encéfalo/citología , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/fisiología , Humanos
10.
Mol Cells ; 44(10): 723-735, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34711690

RESUMEN

Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.


Asunto(s)
Proteína Goosecoide/metabolismo , Placa Neural/embriología , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales
11.
Sci Rep ; 10(1): 16780, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033315

RESUMEN

Neuroectoderm formation is the first step in development of a proper nervous system for vertebrates. The developmental decision to form a non-neural ectoderm versus a neural one involves the regulation of BMP signaling, first reported many decades ago. However, the precise regulatory mechanism by which this is accomplished has not been fully elucidated, particularly for transcriptional regulation of certain key transcription factors. BMP4 inhibition is a required step in eliciting neuroectoderm from ectoderm and Foxd4l1.1 is one of the earliest neural genes highly expressed in the neuroectoderm and conserved across vertebrates, including humans. In this work, we focused on how Foxd4l1.1 downregulates the neural repressive pathway. Foxd4l1.1 inhibited BMP4/Smad1 signaling and triggered neuroectoderm formation in animal cap explants of Xenopus embryos. Foxd4l1.1 directly bound within the promoter of endogenous neural repressor ventx1.1 and inhibited ventx1.1 transcription. Foxd4l1.1 also physically interacted with Xbra in the nucleus and inhibited Xbra-induced ventx1.1 transcription. In addition, Foxd4l1.1 also reduced nuclear localization of Smad1 to inhibit Smad1-mediated ventx1.1 transcription. Foxd4l1.1 reduced the direct binding of Xbra and Smad1 on ventx1.1 promoter regions to block Xbra/Smad1-induced synergistic activation of ventx1.1 transcription. Collectively, Foxd4l1.1 negatively regulates transcription of a neural repressor ventx1.1 by multiple mechanisms in its exclusively occupied territory of neuroectoderm, and thus leading to primary neurogenesis. In conjunction with the results of our previous findings that ventx1.1 directly represses foxd4l1.1, the reciprocal repression of ventx1.1 and foxd4l1.1 is significant in at least in part specifying the mechanism for the non-neural versus neural ectoderm fate determination in Xenopus embryos.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ectodermo/embriología , Regulación del Desarrollo de la Expresión Génica , Placa Neural/embriología , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Proteínas de Unión al ADN/genética , Ectodermo/metabolismo , Placa Neural/metabolismo , Regiones Promotoras Genéticas , Proteínas de Xenopus/genética , Xenopus laevis/genética
12.
Anim Cells Syst (Seoul) ; 24(6): 359-370, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33456720

RESUMEN

Activin, a member of the transforming growth factor (TGF-ß) superfamily, induces mesoderm, endoderm and neuro-ectoderm formation in Xenopus embryos. Despite several previous studies, the complicated gene regulatory network and genes involved in this induction await more elaboration. We identified expression of various fibroblast growth factor (FGF) genes in activin/smad2 treated animal cap explants (AC) of Xenopus embryos. Activin/smad2 increased fgf3/8 expression, which was reduced by co-injection of dominant negative activin receptor (DNAR) and dominant negative Fgf receptor (DNFR). Interestingly, activin/smad2 also increased expression of dual specificity phosphatase 1 (dusp1) which has been known to inhibit Fgf signaling. Dusp1 overexpression in dorsal marginal zone caused gastrulation defect and decreased Jnk/Erk phosphorylation as well as Smad1 linker region phosphorylation. Dusp1 decreased neural and organizer gene expression with increasing of endodermal and ventral gene expression in smad2 treated AC, indicating that dusp1 modulates germ layer specification. Dusp1 decreased neural gene expression in fgf8 treated AC, suggesting that Erk and/or Jnk phosphorylation may be involved in fgf8 induced neural induction. In addition, dusp1 decreased the reporter gene activities of activin response element (ARE) and increased it for bmp response element (BRE), indicating that dusp1 modulates two opposite morphogen signaling of dorsal (activin/Smad2) and ventral (bmp/Smad1) tracks, acting to fine tune the Fgf/Erk pathway.

13.
BMB Rep ; 52(6): 403-408, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31068250

RESUMEN

Dorsoventral patterning of body axis in vertebrate embryo is tightly controlled by a complex regulatory network of transcription factors. Ventx1.1 is known as a transcriptional repressor to inhibit dorsal mesoderm formation and neural differentiation in Xenopus. In an attempt to identify, using chromatin immunoprecipitation (ChIP)-Seq, genome-wide binding pattern of Ventx1.1 in Xenopus gastrulae, we observed that Ventx1.1 associates with its own 5'-flanking sequence. In this study, we present evidence that Ventx1.1 binds a cis-acting Ventx1.1 response element (VRE) in its own promoter, leading to repression of its own transcription. Site-directed mutagenesis of the VRE in the Ventx1.1 promoter significantly abrogated this inhibitory autoregulation of Ventx1.1 transcription. Notably, Ventx1.1 and Xcad2, an activator of Ventx1.1 transcription, competitively co-occupied the VRE in the Ventx1.1 promoter. In support of this, mutation of the VRE down-regulated basal and Xcad2-induced levels of Ventx1.1 promoter activity. In addition, overexpression of Ventx1.1 prevented Xcad2 from binding to the Ventx1.1 promoter, and vice versa. Taken together, these results suggest that Ventx1.1 negatively regulates its own transcription in competition with Xcad2, thereby fine-tuning its own expression levels during dorsoventral patterning of Xenopus early embryo. [BMB Reports 2019; 52(6): 403-408].


Asunto(s)
Factor de Transcripción CDX2/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Factor de Transcripción CDX2/genética , Inmunoprecipitación de Cromatina/métodos , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Activación Transcripcional , Proteínas de Xenopus/genética , Xenopus laevis/genética
14.
Sci Rep ; 8(1): 11391, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061699

RESUMEN

Crosstalk of signaling pathways play crucial roles in cell proliferation, cell differentiation, and cell fate determination for development. In the case of ventx1.1 in Xenopus embryos, both BMP-4/Smad-1 and FGF/Xbra signaling induce the expression of neural repressor ventx1.1. However, the details of how these two pathways interact and lead to neural inhibition by ventx1.1 remain largely unknown. In the present study, Xbra directly bound to the ventx1.1 promoter region and inhibited neurogenesis in a Ventx1.1-dependent manner. Furthermore, Smad-1 and Xbra physically interacted and regulated ventx1.1 transcription in a synergistic fashion. Xbra and Smad-1 interaction cooperatively enhanced the binding of an interacting partner within the ventx1.1 promoter and maximum cooperation was achieved in presence of intact DNA binding sites for both Smad-1 and Xbra. Collectively, BMP-4/Smad-1 and FGF/Xbra signal crosstalk cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos. This suggests that the crosstalk between BMP-4 and FGF signaling negatively regulates early neurogenesis by synergistic activation of ventx1.1 in Xenopus embryos.


Asunto(s)
Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Neuronas/metabolismo , Proteína Smad1/metabolismo , Proteínas de Dominio T Box/metabolismo , Transcripción Genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Neurogénesis , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Elementos de Respuesta/genética
15.
Mol Cells ; 41(12): 1061-1071, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30590909

RESUMEN

From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Diferenciación Celular , Sistema Nervioso , Transducción de Señal , Proteínas de Xenopus/metabolismo
16.
Mol Cells ; 39(4): 352-7, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-26923193

RESUMEN

Vertebrate neurogenesis requires inhibition of endogenous bone morphogenetic protein (BMP) signals in the ectoderm. Blocking of BMPs in animal cap explants causes the formation of anterior neural tissues as a default fate. To identify genes involved in the anterior neural specification, we analyzed gene expression profiles using a Xenopus Affymetrix Gene Chip after BMP-4 inhibition in animal cap explants. We found that the xCyp26c gene, encoding a retinoic acid (RA) degradation enzyme, was upregulated following inhibition of BMP signaling in early neuroectodermal cells. Whole-mount in situ hybridization analysis showed that xCyp26c expression started in the anterior region during the early neurula stage. Overexpression of xCyp26c weakly induced neural genes in animal cap explants. xCyp26c abolished the expression of all trans-/cis-RA-induced posterior genes, but not basic FGF-induced posterior genes. Depletion of xCyp26c by morpholino-oligonucleotides suppressed the normal formation of the axis and head, indicating that xCyp26c plays a critical role in the specification of anterior neural tissue in whole embryos. In animal cap explants, however, xCyp26c morpholinos did not alter anterior-to-posterior neural tissue formation. Together, these results suggest that xCyp26c plays a specific role in anterior-posterior (A-P) neural patterning of Xenopus embryos.


Asunto(s)
Tipificación del Cuerpo , Proteína Morfogenética Ósea 4/antagonistas & inhibidores , Sistema Enzimático del Citocromo P-450/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Proteínas de Pez Cebra/antagonistas & inhibidores , Animales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Placa Neural/embriología , Transducción de Señal , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA