Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Chem ; 70(7): 978-986, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38757262

RESUMEN

BACKGROUND: Abuse of fentanyl and its analogs is a major contributor to the opioid overdose epidemic in the United States, but detecting and quantifying trace amounts of such drugs remains a challenge without resorting to sophisticated mass spectrometry-based methods. METHODS: A sensitive immunoassay with a sub-picogram limit of detection for fentanyl and a wide range of fentanyl analogs has been developed, using a novel high-affinity antibody fused with NanoLuc, a small-size luciferase that can emit strong and stable luminescence. When used with human urine samples, the assay has a sub-picogram limit of detection for fentanyl, with results fully concordant with LC-MS. RESULTS: When applied to clinical samples, the novel chemiluminescence immunoassay can detect low positive fentanyl missed by routine screening immunoassays, with a limit of detection of 0.8 pg/mL in human urine. When applied to environmental samples, the assay can detect levels as low as 0.25 pg fentanyl per inch2 of environment surface. Assay turnaround time is less than 1 h, with inexpensive equipment and the potential for high-throughput automation or in-field screening. CONCLUSIONS: We have established a novel assay that may have broad applications in clinical, environmental, occupational, and forensic scenarios for detection of trace amounts of fentanyl and its analogs.


Asunto(s)
Fentanilo , Mediciones Luminiscentes , Fentanilo/orina , Fentanilo/análisis , Humanos , Inmunoensayo/métodos , Mediciones Luminiscentes/métodos , Límite de Detección , Detección de Abuso de Sustancias/métodos , Analgésicos Opioides/orina , Analgésicos Opioides/análisis
2.
Anal Chem ; 95(12): 5214-5222, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36917636

RESUMEN

Mass spectrometry imaging (MSI) is a powerful tool for label-free mapping of the spatial distribution of proteins in biological tissues. We have previously demonstrated imaging of individual proteoforms in biological tissues using nanospray desorption electrospray ionization (nano-DESI), an ambient liquid extraction-based MSI technique. Nano-DESI MSI generates multiply charged protein ions, which is advantageous for their identification using top-down proteomics analysis. In this study, we demonstrate proteoform mapping in biological tissues with a spatial resolution down to 7 µm using nano-DESI MSI. A substantial decrease in protein signals observed in high-spatial-resolution MSI makes these experiments challenging. We have enhanced the sensitivity of nano-DESI MSI experiments by optimizing the design of the capillary-based probe and the thickness of the tissue section. In addition, we demonstrate that oversampling may be used to further improve spatial resolution at little or no expense to sensitivity. These developments represent a new step in MSI-based spatial proteomics, which complements targeted imaging modalities widely used for studying biological systems.


Asunto(s)
Diagnóstico por Imagen , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Iones
3.
Annu Rev Phys Chem ; 72: 307-329, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33441032

RESUMEN

Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications.


Asunto(s)
Espectrometría de Masas/métodos , Animales , Encéfalo/diagnóstico por imagen , Química Encefálica , Humanos , Riñón/química , Riñón/diagnóstico por imagen , Hígado/química , Hígado/diagnóstico por imagen , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos
4.
Angew Chem Int Ed Engl ; 60(14): 7559-7563, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33460514

RESUMEN

Unraveling the complexity of the lipidome requires the development of novel approaches for the structural characterization of lipid species with isomer-level discrimination. Herein, we introduce an online photochemical approach for lipid isomer identification through selective derivatization of double bonds by reaction with singlet oxygen. Lipid hydroperoxide products are generated promptly after laser irradiation. Fragmentation of these species in a mass spectrometer produces diagnostic fragments revealing the C=C locations in the unreacted lipids. This approach uses an inexpensive light source and photosensitizer making it easy to incorporate into any lipidomics workflow. We demonstrate the utility of this approach for the shotgun profiling of C=C locations in different lipid classes present in tissue extracts using electrospray ionization (ESI) and ambient imaging of lipid species differing only by the location of C=C bonds using nanospray desorption electrospray ionization (nano-DESI).


Asunto(s)
Carbono/química , Lípidos/química , Peróxido de Hidrógeno/química , Isomerismo , Marcaje Isotópico , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Espectrometría de Masa por Ionización de Electrospray
5.
Int J Mass Spectrom ; 4482020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32863736

RESUMEN

Nonpolar triglycerides (TGs) are rarely detected in mass spectrometry imaging (MSI) experiments unless they are abundant in the sample. Herein, we use nanospray desorption electrospray ionization (nano-DESI) to explore the role of the solvent composition and ionic dopants on the detection of TGs in a murine gastrocnemius muscle tissue used as a model system. We evaluated three solvent mixtures for their ability to extract nonpolar TG species: MeOH:H2O 9:1 (v/v), MeOH:DCM 6:4 (v/v) and MeOH:AcN:tol 5:3.5:1.5 (v/v/v). We observe that TGs are mainly detected as [M+K]+ adducts and their extraction efficiency is improved using less polar solvents: MeOH:DCM and MeOH:AcN:tol. We also explore whether the ionization efficiency of TGs may be improved by doping the MeOH:AcN:tol solvent with ammonium formate (AF) and other ionic additives. However, the formation of [M+NH4]+ adducts of TGs is less efficient than the formation of [M+K]+ adducts in the range of AF concentrations from 0.1 to 10 mM. Chemical derivatization using 100 µM of Girard T reagent predominately generates reaction products of phosphatidylcholine rather than TG species. Moreover, the presence of the Girard T reagent suppresses ion signals of all the species in the spectrum including TGs. Nano-DESI MSI experiments performed using MeOH:AcN:tol solvent enable imaging of TGs without any detectable adverse effect on signals of other lipids and metabolites. Specifically, 10 out of 14 TG species were detected exclusively using MeOH:AcN:tol and the sensitivity towards other TGs was improved by at least an order of magnitude. Although polyunsaturated TGs may be detected using both solvents, saturated and monounsaturated TGs are only detected using MeOH:AcN:tol. Our results provide a direct path for the improved detection of TGs in tissue imaging experiments using liquid-based ambient ionization techniques.

6.
Angew Chem Int Ed Engl ; 59(20): 7711-7716, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32109333

RESUMEN

The design of functional interfaces is central to both fundamental and applied research in materials science and energy technology. We introduce a new, broadly applicable technique for the precisely controlled high-throughput preparation of well-defined interfaces containing polyatomic species ranging from small ions to nanocrystals and large protein complexes. The mass-dispersive deposition of ions onto surfaces is achieved using a rotating-wall mass analyzer, a compact device which enables the separation of ions using low voltages and has a theoretically unlimited mass range. We demonstrate an efficient deposition of singly charged Au144 (SC4 H9 )60 ions (33.7 kDa), which opens up exciting opportunities for the structural characterization of nanocrystals and their assemblies using transmission electron microscopy. Our approach also enables the high-throughput deposition of mass-selected ions from multicomponent mixtures, which is of interest to the controlled preparation of surface gradients and rapid screening of molecules in mixtures for a specific property.

8.
ACS Appl Mater Interfaces ; 15(23): 27647-27657, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37252783

RESUMEN

Opioid misuse and overdose have caused devastating public health challenges and economic burdens, calling for the need of rapid, accurate sensitive opioid sensors. Here, we report a photonic crystal-based opioid sensor in the total internal reflection configuration, providing label-free, rapid, quantitative measurements through change of the refractive index. The one-dimensional photonic crystal with a defect layer that is immobilized with opioid antibodies acts as a resonator with an open microcavity. The highly accessible structure responds to analytes within a minute after the aqueous opioid solution is introduced, achieving the highest sensitivity of 5688.8 nm/refractive index unit (RIU) at the incident angle of 63.03°. Our sensor shows a limit of detection (LOD) of 7 ng/mL for morphine in phosphate-buffered saline (PBS, pH 7.4) solutions, well below the required clinical detection limit, and an LOD of 6 ng/mL for fentanyl in PBS, close to the clinical requirement. The sensor can selectively detect fentanyl from a mixture of morphine and fentanyl and be regenerated in 2 min with up to 93.66% recovery rate after five cycles. The efficacy of our sensor is further validated in artificial interstitial fluid and human urine samples.


Asunto(s)
Analgésicos Opioides , Técnicas Biosensibles , Humanos , Óptica y Fotónica , Fentanilo , Derivados de la Morfina
9.
Chem Sci ; 14(15): 4070-4082, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37063787

RESUMEN

The skeletal muscle is a highly heterogeneous tissue comprised of different fiber types with varying contractile and metabolic properties. The complexity in the analysis of skeletal muscle fibers associated with their small size (30-50 µm) and mosaic-like distribution across the tissue tnecessitates the use of high-resolution imaging to differentiate between fiber types. Herein, we use a multimodal approach to characterize the chemical composition of skeletal fibers in a limb muscle, the gastrocnemius. Specifically, we combine high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging (MSI) with immunofluorescence (IF)-based fiber type identification. Computational image registration and segmentation approaches are used to integrate the information obtained with both techniques. Our results indicate that the transition between oxidative and glycolytic fibers is associated with shallow chemical gradients (<2.5 fold change in signals). Interestingly, we did not find any fiber type-specific molecule. We hypothesize that these findings might be linked to muscle plasticity thereby facilitating a switch in the metabolic properties of fibers in response to different conditions such as exercise and diet, among others. Despite the shallow chemical gradients, cardiolipins (CLs), acylcarnitines (CAR), monoglycerides (MGs), fatty acids, highly polyunsaturated phospholipids, and oxidized phospholipids, were identified as molecular signatures of oxidative metabolism. In contrast, histidine-related compounds were found as molecular signatures of glycolytic fibers. Additionally, the presence of highly polyunsaturated acyl chains in phospholipids was found in oxidative fibers whereas more saturated acyl chains in phospholipids were found in glycolytic fibers which suggests an effect of the membrane fluidity on the metabolic properties of skeletal myofibers.

10.
ACS Meas Sci Au ; 2(5): 466-474, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36281292

RESUMEN

Mass spectrometry imaging (MSI) enables label-free mapping of hundreds of molecules in biological samples with high sensitivity and unprecedented specificity. Conventional MSI experiments are relatively slow, limiting their utility for applications requiring rapid data acquisition, such as intraoperative tissue analysis or 3D imaging. Recent advances in MSI technology focus on improving the spatial resolution and molecular coverage, further increasing the acquisition time. Herein, a deep learning approach for dynamic sampling (DLADS) was employed to reduce the number of required measurements, thereby improving the throughput of MSI experiments in comparison with conventional methods. DLADS trains a deep learning model to dynamically predict molecularly informative tissue locations for active mass spectra sampling and reconstructs high-fidelity molecular images using only the sparsely sampled information. Experimental hardware and software integration of DLADS with nanospray desorption electrospray ionization (nano-DESI) MSI is reported for the first time, which demonstrates a 2.3-fold improvement in throughput for a linewise acquisition mode. Meanwhile, simulations indicate that a 5-10-fold throughput improvement may be achieved using the pointwise acquisition mode.

11.
Anal Chim Acta ; 1186: 339085, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34756271

RESUMEN

Simultaneous spatial localization and structural characterization of molecules in complex biological samples currently represents an analytical challenge for mass spectrometry imaging (MSI) techniques. In this study, we describe a novel experimental platform, which substantially expands the capabilities and enhances the depth of chemical information obtained in high spatial resolution MSI experiments performed using nanospray desorption electrospray ionization (nano-DESI). Specifically, we designed and constructed a portable nano-DESI MSI platform and coupled it with a drift tube ion mobility (IM) spectrometer-mass spectrometer. We demonstrate imaging of drift time-separated ions with a high spatial resolution of better than ∼25 µm using uterine tissues on day 4 of pregnancy in mice. Collision cross-section measurements provide unique molecular descriptors of molecules observed in nano-DESI-IM-MSI necessary for their unambiguous identification by comparison with databases. Meanwhile, isomer-specific imaging reveals variations in the isomeric composition across the tissue. Furthermore, IM separation efficiently eliminates isobaric and isomeric interferences originating from solvent peaks, overlapping isotopic peaks of endogenous molecules extracted from the tissue, and products of in-source fragmentation, which is critical to obtaining accurate concentration gradients in the sample using MSI. The structural information provided by the IM separation substantially expands the molecular specificity of high-resolution MSI necessary for unraveling the complexity of biological systems.


Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Masa por Ionización de Electrospray , Animales , Pruebas Diagnósticas de Rutina , Iones , Ratones
12.
mBio ; 11(5)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109764

RESUMEN

Metals are essential nutrients that all living organisms acquire from their environment. While metals are necessary for life, excess metal uptake can be toxic; therefore, intracellular metal levels are tightly regulated in bacterial cells. Staphylococcus aureus, a Gram-positive bacterium, relies on metal uptake and metabolism to colonize vertebrates. Thus, we hypothesized that an expanded understanding of metal homeostasis in S. aureus will lead to the discovery of pathways that can be targeted with future antimicrobials. We sought to identify small molecules that inhibit S. aureus growth in a metal-dependent manner as a strategy to uncover pathways that maintain metal homeostasis. Here, we demonstrate that VU0026921 kills S. aureus through disruption of metal homeostasis. VU0026921 activity was characterized through cell culture assays, transcriptional sequencing, compound structure-activity relationship, reactive oxygen species (ROS) generation assays, metal binding assays, and metal level analyses. VU0026921 disrupts metal homeostasis in S. aureus, increasing intracellular accumulation of metals and leading to toxicity through mismetalation of enzymes, generation of reactive oxygen species, or disruption of other cellular processes. Antioxidants partially protect S. aureus from VU0026921 killing, emphasizing the role of reactive oxygen species in the mechanism of killing, but VU0026921 also kills S. aureus anaerobically, indicating that the observed toxicity is not solely oxygen dependent. VU0026921 disrupts metal homeostasis in multiple Gram-positive bacteria, leading to increased reactive oxygen species and cell death, demonstrating the broad applicability of these findings. Further, this study validates VU0026921 as a probe to further decipher mechanisms required to maintain metal homeostasis in Gram-positive bacteria.IMPORTANCEStaphylococcus aureus is a leading agent of antibiotic-resistant bacterial infections in the world. S. aureus tightly controls metal homeostasis during infection, and disruption of metal uptake systems impairs staphylococcal virulence. We identified small molecules that interfere with metal handling in S. aureus to develop chemical probes to investigate metallobiology in this organism. Compound VU0026921 was identified as a small molecule that kills S. aureus both aerobically and anaerobically. The activity of VU0026921 is modulated by metal supplementation, is enhanced by genetic inactivation of Mn homeostasis genes, and correlates with increased cellular reactive oxygen species. Treatment with VU0026921 causes accumulation of multiple metals within S. aureus cells and concomitant upregulation of genes involved in metal detoxification. This work defines a small-molecule probe for further defining the role of metal toxicity in S. aureus and validates future antibiotic development targeting metal toxicity pathways.


Asunto(s)
Antibacterianos/farmacología , Bacterias Grampositivas/metabolismo , Homeostasis/efectos de los fármacos , Metales/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Citoplasma/química , Especies Reactivas de Oxígeno/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Staphylococcus aureus/metabolismo , Virulencia
13.
Int J Pharm ; 496(2): 922-30, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26468037

RESUMEN

Understanding how nanoparticles are formed and how those processes ultimately determine the nanoparticles' properties and their impact on their capture by immune cells is key in vaccination studies. Accordingly, we wanted to evaluate how the previously described poly (anhydride)-based nanoparticles of the copolymer of methyl vinyl ether and maleic anhydride (NP) interact with macrophages, and how this process depends on the physicochemical properties derived from the method of preparation. First, we studied the influence of the desolvation and drying processes used to obtain the nanoparticles. NP prepared by the desolvation of the polymers in acetone with a mixture of ethanol and water yielded higher mean diameters than those obtained in the presence of water (250nm vs. 180nm). In addition, nanoparticles dried by lyophilization presented higher negative zeta potentials than those dried by spray-drying (-47mV vs. -35mV). Second, the influence of the NP formulation on the phagocytosis by J774 murine macrophage-like cell line was investigated. The data indicated that NPs prepared in the presence of water were at least three-times more efficiently internalized by cells than NPs prepared with the mixture of ethanol and water. Besides, lyophilized nanoparticles appeared to be more efficiently taken up by J744 cells than those dried by spray-drying. To further understand the specific mechanisms involved in the cellular internalization of NPs, different pharmacological inhibitors were used to interfere with specific uptake pathways. Results suggest that the NP formulations, particularly, nanoparticles prepared by the addition of ethanol:water, are internalized by the clathrin-mediated endocytosis, rather than caveolae-mediated mechanisms, supporting their previously described vaccine adjuvant properties.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Macrófagos/fisiología , Maleatos/farmacología , Polietilenos/farmacología , Animales , Células Cultivadas , Maleatos/metabolismo , Ratones , Nanopartículas , Fagocitosis/efectos de los fármacos , Polietilenos/metabolismo , Vacunas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA