Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Am J Med Genet A ; 167A(2): 345-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25756153

RESUMEN

Uniparental disomy (UPD) for imprinted chromosomes can cause abnormal phenotypes due to absent or overexpression of imprinted genes. UPD(14)pat causes a unique constellation of features including thoracic skeletal anomalies, polyhydramnios, placentomegaly, and limited survival; its hypothesized cause is overexpression of paternally expressed RTL1, due to absent regulatory effects of maternally expressed RTL1as. UPD(14)mat causes a milder condition with hypotonia, growth failure, and precocious puberty; its hypothesized cause is absence of paternally expressed DLK1. To more clearly establish how gains and losses of imprinted genes can cause disease, we report six individuals with copy number variations of the imprinted 14q32 region identified through clinical microarray-based comparative genomic hybridization. Three individuals presented with UPD(14)mat-like phenotypes (Temple syndrome) and had apparently de novo deletions spanning the imprinted region, including DLK1. One of these deletions was shown to be on the paternal chromosome. Two individuals with UPD(14)pat-like phenotypes had 122-154kb deletions on their maternal chromosomes that included RTL1as but not the differentially methylated regions that regulate imprinted gene expression, providing further support for RTL1 overexpression as a cause for the UPD(14)pat phenotype. The sixth individual is tetrasomic for a 1.7Mb segment, including the imprinted region, and presents with intellectual disability and seizures but lacks significant phenotypic overlap with either UPD(14) syndrome. Therefore, the 14q32 imprinted region is dosage sensitive, with deletions of different critical regions causing UPD(14)mat- and UPD(14)pat-like phenotypes, while copy gains are likely insufficient to recapitulate these phenotypes.


Asunto(s)
Cromosomas Humanos Par 14 , Variaciones en el Número de Copia de ADN , Estudios de Asociación Genética , Familia de Multigenes , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Deleción Cromosómica , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Duplicación Cromosómica , Hibridación Genómica Comparativa , Facies , Femenino , Sitios Genéticos , Impresión Genómica , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Disomía Uniparental , Adulto Joven
2.
Eur J Hum Genet ; 23(2): 173-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24824130

RESUMEN

Genomic copy-number variations (CNVs) constitute an important cause of epilepsies and other human neurological disorders. Recent advancement of technologies integrating genome-wide CNV mapping and sequencing is rapidly expanding the molecular field of pediatric neurodevelopmental disorders. In a previous study, a novel epilepsy locus was identified on 6q16.3q22.31 by linkage analysis in a large pedigree. Subsequent array comparative genomic hybridization (array CGH) analysis of four unrelated cases narrowed this region to ∼5 Mb on 6q22.1q22.31. We sought to further narrow the critical region on chromosome 6q22. Array CGH analysis was used in genome-wide screen for CNVs of a large cohort of patients with neurological abnormalities. Long-range PCR and DNA sequencing were applied to precisely map chromosomal deletion breakpoints. Finally, real-time qPCR was used to estimate relative expression in the brain of the candidate genes. We identified six unrelated patients with overlapping microdeletions within 6q22.1q22.31 region, three of whom manifested seizures. Deletions were found to be de novo in 5/6 cases, including all subjects presenting with seizures. We sequenced the deletion breakpoints in four patients and narrowed the critical region to a ∼250-kb segment at 6q22.1 that includes NUS1, several expressed sequence tags (ESTs) that are highly expressed in the brain, and putative regulatory sequences of SLC35F1. Our findings indicate that dosage alteration in particular, of NUS1, EST AI858607, or SLC35F1 are important contributors to the neurodevelopmental phenotype associated with 6q22 deletion, including epilepsy and tremors.


Asunto(s)
Cromosomas Humanos Par 6/genética , Epilepsia/genética , Eliminación de Gen , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Preescolar , Epilepsia/diagnóstico , Femenino , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA