Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Phys Rev Lett ; 128(18): 187001, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35594110

RESUMEN

The Mn-based superconductor is rare owing to the strong magnetic pair-breaking effect. Here we report on the discovery of pressure-induced superconductivity in KMn_{6}Bi_{5}, which becomes the first ternary Mn-based superconductor. At ambient pressure, the quasi-one-dimensional KMn_{6}Bi_{5} is an antiferromagnetic metal with T_{N}≈75 K. By measuring resistance and ac magnetic susceptibility under hydrostatic pressures up to 14.2 GPa in a cubic anvil cell apparatus, we find that its antiferromagnetic transition can be suppressed completely at a critical pressure of P_{c}≈13 GPa, around which bulk superconductivity emerges and displays a superconducting dome with the maximal T_{c}^{onset}=9.3 K achieved at about 14 GPa. The close proximity of superconductivity to a magnetic instability in the temperature-pressure phase diagram of KMn_{6}Bi_{5} and an unusually large µ_{0}H_{c2}(0) exceeding the Pauli paramagnetic limit suggests an unconventional magnetism-mediated paring mechanism. In contrast to the binary MnP, the flexibility of the crystal structure and chemical compositions in the ternary AMn_{6}Bi_{5} (A=alkali metal) can open a new avenue for finding more Mn-based superconductors.

2.
Phys Rev Lett ; 126(24): 247001, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34213920

RESUMEN

CsV_{3}Sb_{5} is a newly discovered Z_{2} topological kagome metal showing the coexistence of a charge-density-wave (CDW)-like order at T^{*}=94 K and superconductivity (SC) at T_{c}=2.5 K at ambient pressure. Here, we study the interplay between CDW and SC in CsV_{3}Sb_{5} via measurements of resistivity, dc and ac magnetic susceptibility under various pressures up to 6.6 GPa. We find that the CDW transition decreases with pressure and experience a subtle modification at P_{c1}≈0.6-0.9 GPa before it vanishes completely at P_{c2}≈2 GPa. Correspondingly, T_{c}(P) displays an unusual M-shaped double dome with two maxima around P_{c1} and P_{c2}, respectively, leading to a tripled enhancement of T_{c} to about 8 K at 2 GPa. The obtained temperature-pressure phase diagram resembles those of unconventional superconductors, illustrating an intimated competition between CDW-like order and SC. The competition is found to be particularly strong for the intermediate pressure range P_{c1}≤P≤P_{c2} as evidenced by the broad superconducting transition and reduced superconducting volume fraction. The modification of CDW order around P_{c1} has been discussed based on the band structure calculations. This work not only demonstrates the potential to raise T_{c} of the V-based kagome superconductors, but also offers more insights into the rich physics related to the electron correlations in this novel family of topological kagome metals.

3.
Phys Rev Lett ; 123(4): 047201, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31491259

RESUMEN

The n-type HgCr_{2}Se_{4} exhibits a sharp semiconductor-to-metal transition (SMT) in resistivity accompanying the ferromagnetic order at T_{C}=106 K. Here, we investigate the effects of pressure and magnetic field on the concomitant SMT and ferromagnetic order by measuring resistivity, dc and ac magnetic susceptibility, as well as single-crystal neutron diffraction under various pressures up to 8 GPa and magnetic fields up to 8 T. Our results demonstrate that the ferromagnetic metallic ground state of n-type HgCr_{2}Se_{4} is destabilized and gradually replaced by an antiferromagnetic, most likely a spiral magnetic, and insulating ground state upon the application of high pressure. On the other hand, the application of external magnetic fields can restore the ferromagnetic metallic state again at high pressures, resulting in a colossal magnetoresistance (CMR) as high as ∼ 3×10^{11}% under 5 T and 2 K at 4 GPa. The present study demonstrates that n-type HgCr_{2}Se_{4} is located at a peculiar critical point where the balance of competition between ferromagnetic and antiferromagnetic interactions can be easily tipped by external stimuli, providing a new platform for achieving CMR in a single-valent system.

4.
Phys Rev Lett ; 122(22): 226601, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283289

RESUMEN

The Lifshitz transition, a change in Fermi surface topology, is likely to greatly influence exotic correlated phenomena in solids, such as high-temperature superconductivity and complex magnetism. However, since the observation of Fermi surfaces is generally difficult in the strongly correlated systems, a direct link between the Lifshitz transition and quantum phenomena has been elusive so far. Here, we report a marked impact of the pressure-induced Lifshitz transition on thermoelectric performance for SnSe, a promising thermoelectric material without a strong electron correlation. By applying pressure up to 1.6 GPa, we have observed a large enhancement of the thermoelectric power factor by more than 100% over a wide temperature range (10-300 K). Furthermore, the high carrier mobility enables the detection of quantum oscillations of resistivity, revealing the emergence of new Fermi pockets at ∼0.86 GPa. The observed thermoelectric properties linked to the multivalley band structure are quantitatively reproduced by first-principles calculations, providing novel insight into designing the SnSe-related materials for potential valleytronic as well as thermoelectric applications.

5.
Proc Natl Acad Sci U S A ; 112(6): 1670-4, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624483

RESUMEN

The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr(4+) → 2Cr(3+) + Cr(6+) in association with the 6s-p hybridization on the Pb(2+) is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations.

6.
Phys Rev Lett ; 118(14): 147004, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28430492

RESUMEN

The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (T_{c}). However, the absence of hole pockets near the Fermi level of the iron-selenide (FeSe) derived high-T_{c} superconductors raises a fundamental question of whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in the high-T_{c} phase induced by pressure in bulk FeSe from magnetotransport measurements and first-principles calculations. With increasing pressure, the low-T_{c} superconducting phase transforms into the high-T_{c} phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstrating dominant hole carriers in contrast to other FeSe-derived high-T_{c} systems. Moreover, the Hall coefficient is enlarged and the magnetoresistance exhibits anomalous scaling behaviors, evidencing strongly enhanced interband spin fluctuations in the high-T_{c} phase. These results in FeSe highlight similarities with high-T_{c} phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.

7.
Phys Rev Lett ; 117(17): 176603, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27824456

RESUMEN

The perovskite SrIrO_{3} is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn^{4+} for Ir^{4+} in the SrIr_{1-x}Sn_{x}O_{3} perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T_{N}≥225 K. The continuous change of the cell volume as detected by x-ray diffraction and the λ-shape transition of the specific heat on cooling through T_{N} demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below T_{N}. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T_{N} in the same way as proposed by Slater.

8.
Phys Rev Lett ; 114(11): 117001, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25839302

RESUMEN

We report the discovery of superconductivity on the border of long-range magnetic order in the itinerant-electron helimagnet MnP via the application of high pressure. Superconductivity with T(sc)≈1 K emerges and exists merely near the critical pressure P(c)≈8 GPa, where the long-range magnetic order just vanishes. The present finding makes MnP the first Mn-based superconductor. The close proximity of superconductivity to a magnetic instability suggests an unconventional pairing mechanism. Moreover, the detailed analysis of the normal-state transport properties evidenced non-Fermi-liquid behavior and the dramatic enhancement of the quasiparticle effective mass near P(c) associated with the magnetic quantum fluctuations.

9.
Phys Rev Lett ; 114(8): 086401, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25768771

RESUMEN

We report electrical resistivity, ac magnetic susceptibility, and x-ray absorption spectroscopy measurements of intermediate valence YbNi_{3}Ga_{9} under pressure and magnetic field. We have revealed a characteristic pressure-induced Yb valence crossover within the temperature-pressure phase diagram, and a first-order metamagnetic transition is found below P_{c}∼9 GPa where the system undergoes a pressure-induced antiferromagnetic transition. As a possible origin of the metamagnetic behavior, a critical valence fluctuation emerging near the critical point of the first-order valence transition is discussed on the basis of the temperature-field-pressure phase diagram.

10.
Phys Rev Lett ; 111(17): 176403, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24206506

RESUMEN

The A-site ordered perovskite (AA(3)')B(4)O(12) can accommodate transition metals on both A' and B sites in the crystal structure. Because of this structural feature, it is possible to have narrow-band electrons interacting with broadband electrons from different sublattices. Here we report a new A-site ordered perovskite (CaCu(3))Ir(4)O(12) synthesized under high pressure. The coupling between localized spins on Cu(2+) and itinerant electrons from the Ir-O sublattice makes Kondo-like physics take place at a temperature as high as 80 K. Results from the local density approximation calculation have confirmed the relevant band structure. The magnetization anomaly found at 80 K can be well rationalized by the two-fluid model.

11.
Nat Commun ; 14(1): 667, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750576

RESUMEN

The recently discovered kagome superconductors AV3Sb5 (A = K, Rb, Cs) exhibit unusual charge-density-wave (CDW) orders with time-reversal and rotational symmetry breaking. One of the most crucial unresolved issues is identifying the symmetry of the superconductivity that develops inside the CDW phase. Theory predicts a variety of unconventional superconducting symmetries with sign-changing and chiral order parameters. Experimentally, however, superconducting phase information in AV3Sb5 is still lacking. Here we report the impurity effects in CsV3Sb5 using electron irradiation as a phase-sensitive probe of superconductivity. Our magnetic penetration depth measurements reveal that with increasing impurities, an anisotropic fully-gapped state changes to an isotropic full-gap state without passing through a nodal state. Furthermore, transport measurements under pressure show that the double superconducting dome in the pressure-temperature phase diagram survives against sufficient impurities. These results support that CsV3Sb5 is a non-chiral, anisotropic s-wave superconductor with no sign change both at ambient and under pressure.

12.
J Phys Condens Matter ; 36(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061065

RESUMEN

We report the pressure (P) effect on the superconducting transition temperatureTcand the upper critical fieldµ0Hc2of infinite-layer Nd0.8Sr0.2NiO2thin films by measuring the electrical transport properties under various hydrostatic pressures to 4.6 GPa. At ambient pressure, it shows the clear superconducting transition withTc∼ 10 K. Based on the evolution of resistanceR(T), we found that theTcis monotonically enhanced to ∼14 K upon increasing pressure to 2.9 GPa. The constructed temperature-pressure phase diagram indicates that the calculated slope dTc/dPis about 1.14 K GPa-1and the superconductingTcshows no signatures of saturation with pressure. It thus gives the possibility to further enhanceTcby employing higher pressures or heterostructure engineering. In addition, the normalized slope of upper critical fieldµ0Hc2(0) implies that the electron correlations are gradually decreasing with pressure, which exhibits an opposite evolution with superconductingTc. Our work further confirms the positive pressure effects in nickelate superconductors and gives more insight to further enhance its superconducting transition temperature.

13.
Phys Rev Lett ; 109(18): 187004, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23215319

RESUMEN

We report the discovery of a pressure-induced heavy fermion superconductivity in a nonmagnetic orbital ordering state in the cubic compound PrTi(2)Al(20). In particular, we found that the transition temperature and the effective mass associated with the superconductivity are dramatically enhanced as the system approaches the putative quantum critical point of the orbital order. Our experiment indicates that the strong orbital fluctuations may provide a nonmagnetic glue for Cooper pairing.

14.
Phys Rev Lett ; 108(23): 236403, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-23003979

RESUMEN

We report a comprehensive high-pressure study on the triple-layer T'-La4Ni3O8 with a suite of experimental probes, including structure determination, magnetic, and transport properties up to 50 GPa. Consistent with a recent ab inito calculation, application of hydrostatic pressure suppresses an insulator-metal spin-state transition at P(c)≈6 GPa. However, a low-spin metallic phase does not emerge after the high-spin state is suppressed to the lowest temperature. For P>20 GPa, the ambient T' structure transforms gradually to a T(†)-type structure, which involves a structural reconstruction from fluorite La-O2-La blocks under low pressures to rock-salt LaO-LaO blocks under high pressures. Absence of the metallic phase under pressure has been discussed in terms of local displacements of O2- ions in the fluorite block under pressure before a global T(†) phase is established.

15.
Nat Commun ; 13(1): 4367, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902566

RESUMEN

The successful synthesis of superconducting infinite-layer nickelate thin films with the highest Tc ≈ 15 K has ignited great enthusiasm for this material class as potential analogs of the high-Tc cuprates. Pursuing a higher Tc is always an imperative task in studying a new superconducting material system. Here we report high-quality Pr0.82Sr0.18NiO2 thin films with Tconset ≈ 17 K synthesized by carefully tuning the amount of CaH2 in the topotactic chemical reduction and the effect of pressure on its superconducting properties by measuring electrical resistivity under various pressures in a cubic anvil cell apparatus. We find that the onset temperature of the superconductivity, Tconset, can be enhanced monotonically from ~17 K at ambient pressure to ~31 K at 12.1 GPa without showing signatures of saturation upon increasing pressure. This encouraging result indicates that the Tc of infinite-layer nickelates superconductors still has room to go higher and it can be further boosted by applying higher pressures or strain engineering in the heterostructure films.

16.
Nat Commun ; 13(1): 2975, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624231

RESUMEN

We report an unusual pressure-induced superconducting state that coexists with an antiferromagnetic ordering of Eu2+ moments and shows a large upper critical field comparable to the Pauli paramagnetic limit in EuTe2. In concomitant with the emergence of superconductivity with Tc ≈ 3-5 K above Pc ≈ 6 GPa, the antiferromagnetic transition temperature TN(P) experiences a quicker rise with the slope increased dramatically from dTN/dP = 0.85(14) K/GPa for P ≤ Pc to 3.7(2) K/GPa for P ≥ Pc. Moreover, the superconducting state can survive in the spin-flop state with a net ferromagnetic component of the Eu2+ sublattice under moderate magnetic fields µ0H ≥ 2 T. Our findings establish the pressurized EuTe2 as a rare magnetic superconductor possessing an intimated interplay between magnetism and superconductivity.

17.
Phys Rev Lett ; 106(5): 056602, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21405419

RESUMEN

Studies of the structure, magnetization, and resistivity under pressure on stoichiometric normal spinel Co[V(2)]O(4) single crystals show (i) absence of a structural distortion, (ii) abnormal magnetic critical exponents, and (iii) metallic conductivity induced by pressures at low temperatures. All these results prove that Co[V(2)]O(4) sits on the edge of the itinerant-electron limit. Compared with similar measurements on Fe[V(2)]O(4) and other A[V(2)]O(4) studies, it is shown that a critical V-V separation for a localized-itinerant electronic phase transition exists.

18.
Sci Rep ; 11(1): 17265, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446750

RESUMEN

FeSe is a unique high-[Formula: see text] iron-based superconductor in which nematicity, superconductivity, and magnetism are entangled with each other in the P-T phase diagram. We performed [Formula: see text]Se-nuclear magnetic resonance measurements under pressures of up to 3.9 GPa on 12% S-substituted FeSe, in which the complex overlap between the nematicity and magnetism are resolved. A pressure-induced Lifshitz transition was observed at 1.0 GPa as an anomaly of the density of states and as double superconducting (SC) domes accompanied by different types of antiferromagnetic (AF) fluctuations. The low-[Formula: see text] SC dome below 1 GPa is accompanied by strong AF fluctuations, whereas the high-[Formula: see text] SC dome develops above 1 GPa, where AF fluctuations are fairly weak. These results suggest the importance of the [Formula: see text] orbital and its intra-orbital coupling for the high-[Formula: see text] superconductivity.

19.
Nat Commun ; 12(1): 381, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452257

RESUMEN

The interplay among magnetism, electronic nematicity, and superconductivity is the key issue in strongly correlated materials including iron-based, cuprate, and heavy-fermion superconductors. Magnetic fluctuations have been widely discussed as a pairing mechanism of unconventional superconductivity, but recent theory predicts that quantum fluctuations of nematic order may also promote high-temperature superconductivity. This has been studied in FeSe1-xSx superconductors exhibiting nonmagnetic nematic and pressure-induced antiferromagnetic orders, but its abrupt suppression of superconductivity at the nematic end point leaves the nematic-fluctuation driven superconductivity unconfirmed. Here we report on systematic studies of high-pressure phase diagrams up to 8 GPa in high-quality single crystals of FeSe1-xTex. When Te composition x(Te) becomes larger than 0.1, the high-pressure magnetic order disappears, whereas the pressure-induced superconducting dome near the nematic end point is continuously found up to x(Te) ≈ 0.5. In contrast to FeSe1-xSx, enhanced superconductivity in FeSe1-xTex does not correlate with magnetism but with the suppression of nematicity, highlighting the paramount role of nonmagnetic nematic fluctuations for high-temperature superconductivity in this system.

20.
Sci Adv ; 7(12)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33731356

RESUMEN

Metal-organic frameworks (MOFs), which are self-assemblies of metal ions and organic ligands, provide a tunable platform to search a new state of matter. A two-dimensional (2D) perfect kagome lattice, whose geometrical frustration is a key to realizing quantum spin liquids, has been formed in the π - d conjugated 2D MOF [Cu3(C6S6)] n (Cu-BHT). The recent discovery of its superconductivity with a critical temperature T c of 0.25 kelvin raises fundamental questions about the nature of electron pairing. Here, we show that Cu-BHT is a strongly correlated unconventional superconductor with extremely low superfluid density. A nonexponential temperature dependence of superfluid density is observed, indicating the possible presence of superconducting gap nodes. The magnitude of superfluid density is much smaller than those in conventional superconductors and follows the Uemura's relation of strongly correlated superconductors. These results imply that the unconventional superconductivity in Cu-BHT originates from electron correlations related to spin fluctuations of kagome lattice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA