Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Neurosci ; 24(1): 30, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161411

RESUMEN

INTRODUCTION: It is widely demonstrated that high frequency (HF) repetitive transcranial magnetic stimulation (rTMS) has facilitative effects and is therefore capable to inducing changes in motor responses. One of the most investigated areas is the dorsolateral prefrontal cortex (DLPFC) as it plays a special executive attention role in actively preserving access to stimulus representations and objectives in environments with plenty of distraction such as those of team sports. Volleyball is a team sport in which the attention and coordination components are essential for achieving performance. Thus, the aim of this study was to investigate if HF rTMS at DLPFC in volleyball players can improve homolateral motor coordination and cortical excitability. RESULTS: This study was a double-blinded (participant and evaluator) matched-pair experimental design. Twenty right-handed female volleyball players were recruited for the study and were randomly assigned either the active rTMS (n = 10) or the sham stimulation group (n = 10). The stimulation was performed in one session with 10 Hz, 80% of the resting motor threshold (RMT) of the right first dorsal interosseous muscle, 5 s of stimulation, and 15 s of rest, for a total of 1500 pulses. Before and after stimulation, the coordination and the cortical excitability were evaluated. The significant finding of this paper was that HF-rTMS of the DLPFC improved performance in terms of the homolateral interlimb coordination, with a significantly decreased in resting motor threshold and MEP latency of the ipsilateral motor cortex. It seem that HF-rTMS could increase coordination performances when the velocity of the execution is higher (120 bpm and 180 bpm). CONCLUSION: Moreover, in active rTMS group significant differences emerged after stimulation in RMT and in MEP latency, while no differences emerged after stimulation in MEP amplitude. In conclusion we believe that these results may be of great interest to the scientific community and may also have practical implications in the future.


Asunto(s)
Corteza Motora , Voleibol , Humanos , Femenino , Estimulación Magnética Transcraneal , Mano , Músculos
2.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38069399

RESUMEN

Spirulina, a filamentous microalga, is used all over the world as a nutraceutical dietary supplement. Recent studies have focused on examining its chelating activity and antioxidant properties, especially as a candidate for protection against neurotoxicity caused by heavy metals. The MTT test and LDH assay were used to examine the viability of the SH-SY5Y cells for 24, 48, and 72 h, to Cd, Hg, and Pb, individually or in combination with Spirulina, and the effects of necrotic cell death. In comparison to the control group, the viability of SH-SY5Y cells decreased after 24 h of exposure, with Cd being more toxic than Hg and Pb being less lethal. The effects of heavy metal toxicity on cell survival were ranked in order after 72 h under identical experimental circumstances as follows: Hg, Pb, and Cd. The viability of the cells was then tested after being exposed to Spirulina at doses of 5 at 50 (%v/v) for 24, 48, and 72 h, respectively. SH-SY5Y cells that had been treated with mixtures of heavy metals and Spirulina underwent the same assay. Cell viability is considerably increased by using Spirulina treatments at the prescribed periods and doses. Instead, the same procedure, when applied to SH-SY5Y cells, caused the release of LDH, which is consistent with the reduction in cell viability. We demonstrated for the first time, considering all the available data, that Spirulina 5, 25, and 50 (%v/v) enhanced the number of viable SH-SY5Y cells utilized as a model system for brain cells. Overall, the data from the present study provide a first insight into the promising positive role of Spirulina against the potentially toxic effects of metals.


Asunto(s)
Mercurio , Metales Pesados , Neuroblastoma , Spirulina , Humanos , Mercurio/toxicidad , Cadmio/toxicidad , Plomo/farmacología , Metales Pesados/toxicidad , Línea Celular Tumoral , Supervivencia Celular
3.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834515

RESUMEN

The ketogenic diet (KD), a diet high in fat and protein but low in carbohydrates, is gaining much interest due to its positive effects, especially in neurodegenerative diseases. Beta-hydroxybutyrate (BHB), the major ketone body produced during the carbohydrate deprivation that occurs in KD, is assumed to have neuroprotective effects, although the molecular mechanisms responsible for these effects are still unclear. Microglial cell activation plays a key role in the development of neurodegenerative diseases, resulting in the production of several proinflammatory secondary metabolites. The following study aimed to investigate the mechanisms by which BHB determines the activation processes of BV2 microglial cells, such as polarization, cell migration and expression of pro- and anti-inflammatory cytokines, in the absence or in the presence of lipopolysaccharide (LPS) as a proinflammatory stimulus. The results showed that BHB has a neuroprotective effect in BV2 cells, inducing both microglial polarization towards an M2 anti-inflammatory phenotype and reducing migratory capacity following LPS stimulation. Furthermore, BHB significantly reduced expression levels of the proinflammatory cytokine IL-17 and increased levels of the anti-inflammatory cytokine IL-10. From this study, it can be concluded that BHB, and consequently the KD, has a fundamental role in neuroprotection and prevention in neurodegenerative diseases, presenting new therapeutic targets.


Asunto(s)
Dieta Cetogénica , Fármacos Neuroprotectores , Humanos , Ácido 3-Hidroxibutírico/farmacología , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Citocinas/metabolismo , Fármacos Neuroprotectores/farmacología
4.
Molecules ; 28(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110573

RESUMEN

Microglia, the resident macrophage-like population in the central nervous system, play a crucial role in the pathogenesis of many neurodegenerative disorders by triggering an inflammatory response that leads to neuronal death. Neuroprotective compounds to treat or prevent neurodegenerative diseases are a new field of study in modern medicine. Microglia are activated in response to inflammatory stimuli. The pathogenesis of various neurodegenerative diseases is closely related to the constant activation of microglia due to their fundamental role as a mediator of inflammation in the brain environment. α-Tocopherol, also known as vitamin E, is reported to possess potent neuroprotective effects. The goal of this study was to investigate the biological effects of vitamin E on BV2 microglial cells, as a possible neuroprotective and anti-inflammatory agent, following stimulation with lipopolysaccharide (LPS). The results showed that the pre-incubation of microglia with α-tocopherol can guarantee neuroprotective effects during microglial activation induced by LPS. α-Tocopherol preserved the branched morphology typical of microglia in a physiological state. It also reduced the migratory capacity; the production of pro-inflammatory and anti-inflammatory cytokines such as TNF-α and IL-10; and the activation of receptors such as TRL4 and CD40, which modulate the PI3K-Akt signaling pathway. The results of this study require further insights and research, but they present new scenarios for the application of vitamin E as an antioxidant for the purpose of greater neuroprotection in vivo for the prevention of possible neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Lipopolisacáridos/farmacología , Microglía , alfa-Tocoferol/farmacología , alfa-Tocoferol/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Vitamina E/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Enfermedades Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , FN-kappa B/metabolismo
5.
Int J Mol Sci ; 21(9)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370212

RESUMEN

Adipose tissue is a multifunctional organ involved in many physiological and metabolic processes through the production of adipokines and, in particular, adiponectin. Caloric restriction is one of the most important strategies against obesity today. The very low-calorie ketogenic diet (VLCKD) represents a type of caloric restriction with very or extremely low daily food energy consumption. This study aimed to investigate the physiological effects of a VLCKD on anthropometric and biochemical parameters such as adiponectin levels, as well as analyzing oligomeric profiles and cytokine serum levels in obese subjects before and after a VLCKD. Twenty obese subjects were enrolled. At baseline and after eight weeks of intervention, anthropometric and biochemical parameters, such as adiponectin levels, were recorded. Our findings showed a significant change in the anthropometric and biochemical parameters of these obese subjects before and after a VLCKD. We found a negative correlation between adiponectin and lipid profile, visceral adipose tissue (VAT), C-reactive protein (CRP), and pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), which confirmed the important involvement of adiponectin in metabolic and inflammatory diseases. We demonstrated the beneficial short-term effects of a VLCKD not only in the treatment of obesity but also in the establishment of obesity-correlated diseases.


Asunto(s)
Adiponectina/metabolismo , Restricción Calórica/métodos , Citocinas/sangre , Dieta Cetogénica , Mediadores de Inflamación/sangre , Obesidad/dietoterapia , Adulto , Antropometría/métodos , Proteína C-Reactiva/metabolismo , Femenino , Humanos , Grasa Intraabdominal/metabolismo , Lípidos/sangre , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/metabolismo
6.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354030

RESUMEN

BACKGROUND: On the 31 December 2019, the World Health Organization (WHO) was informed of a cluster of cases of pneumonia of unknown origin detected in Wuhan City, Hubei Province, China. The infection spread first in China and then in the rest of the world, and on the 11th of March, the WHO declared that COVID-19 was a pandemic. Taking into consideration the mortality rate of COVID-19, about 5-7%, and the percentage of positive patients admitted to intensive care units being 9-11%, it should be mandatory to consider and take all necessary measures to contain the COVID-19 infection. Moreover, given the recent evidence in different hospitals suggesting IL-6 and TNF-α inhibitor drugs as a possible therapy for COVID-19, we aimed to highlight that a dietary intervention could be useful to prevent the infection and/or to ameliorate the outcomes during therapy. Considering that the COVID-19 infection can generate a mild or highly acute respiratory syndrome with a consequent release of pro-inflammatory cytokines, including IL-6 and TNF-α, a dietary regimen modification in order to improve the levels of adiponectin could be very useful both to prevent the infection and to take care of patients, improving their outcomes.


Asunto(s)
Antioxidantes/administración & dosificación , Betacoronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Dieta , Suplementos Dietéticos , Neumonía Viral/inmunología , Neumonía Viral/terapia , Adiponectina/metabolismo , Ácido Ascórbico/administración & dosificación , COVID-19 , Infecciones por Coronavirus/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/metabolismo , Flavonoides/administración & dosificación , Humanos , Interleucina-6/inmunología , Interleucina-6/metabolismo , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/terapia , Pandemias , Neumonía Viral/metabolismo , SARS-CoV-2 , Factor de Necrosis Tumoral alfa/metabolismo
7.
Medicina (Kaunas) ; 56(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255569

RESUMEN

BACKGROUND AND OBJECTIVES: Coronavirus disease 2019 (COVID-19) is a highly contagious infectious disease, responsible for a global pandemic that began in January 2020. Human/COVID-19 interactions cause different outcomes ranging from minor health consequences to death. Since social interaction is the default mode by which individuals communicate with their surroundings, different modes of contagion can play a role in determining the long-term consequences for mental health and emotional well-being. We examined some basic aspects of human social interaction, emphasizing some particular features of the emotional contagion. Moreover, we analyzed the main report that described brain damage related to the COVID-19 infection. Indeed, the goal of this review is to suggest a possible explanation for the relationships among emotionally impaired people, brain damage, and COVID-19 infection. RESULTS: COVID-19 can cause several significant neurological disorders and the pandemic has been linked to a rise in people reporting mental health problems, such as depression and anxiety. Neurocognitive symptoms associated with COVID-19 include delirium, both acute and chronic attention and memory impairment related to hippocampal and cortical damage, as well as learning deficits in both adults and children. CONCLUSIONS: Although our knowledge on the biology and long-term clinical outcomes of the COVID-19 infection is largely limited, approaching the pandemic based on lessons learnt from previous outbreaks of infectious diseases and the biology of other coronaviruses will provide a suitable pathway for developing public mental health strategies, which could be positively translated into therapeutic approaches, attempting to improve stress coping responses, thus contributing to alleviate the burden driven by the pandemic.


Asunto(s)
Encefalopatías/virología , COVID-19 , Salud Mental , Distrés Psicológico , SARS-CoV-2/patogenicidad , Adaptación Psicológica , COVID-19/epidemiología , COVID-19/fisiopatología , COVID-19/psicología , Humanos
8.
Somatosens Mot Res ; 33(2): 137-44, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27412765

RESUMEN

OBJECTIVES: In taekwondo competitions, fatigue has a large influence on performance. Recent studies have reported that the excitability in the primary hand motor cortex, investigated with transcranial magnetic stimulation (TMS), is enhanced at the end of a maximal exercise and that this improvement correlates with blood lactate. The aim of the present study was to investigate the relationship between blood lactate and cortical excitability in taekwondo athletes and non-athletes. METHODS: The excitability of the primary motor cortex was measured before and after fatiguing hand-grip exercise by TMS. Capillary blood lactate was measured at rest (pre-test), at the end (0 min), and at 3 and 10 min after the exercise by using a "Lactate Pro" portable lactate analyzer. RESULTS: Significant differences in cortical excitability between the two groups were found after the exercise (p < 0.05). Furthermore, we found a significant relationship between cortical excitability and blood lactate (p < 0.01). CONCLUSION: The present findings showed changes in the excitability in the athletes group and also in the non-athletes group. However, blood lactate seems to have the greater effect in trained subjects compared to untrained subjects. In fact, it appears that, during extremely intensive exercise in taekwondo athletes, lactate may delay the onset of fatigue not only by maintaining the excitability of muscle, but also by increasing the excitability of the primary motor cortex more than in non-athletes.


Asunto(s)
Ejercicio Físico/fisiología , Fuerza de la Mano/fisiología , Ácido Láctico/sangre , Artes Marciales/fisiología , Corteza Motora/fisiología , Adulto , Antropometría , Estudios de Casos y Controles , Electroencefalografía , Electromiografía , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Estadísticas no Paramétricas , Factores de Tiempo , Estimulación Magnética Transcraneal , Adulto Joven
9.
Neurol Sci ; 37(12): 1947-1953, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27544220

RESUMEN

The aim of this study was to verify the hypothesis that transcranial magnetic stimulation (TMS) parameters over the hand region of the motor cortex, such as resting motor threshold (rMT) and motor evoked potential (MEP) latency, predict the behavioural performance of karate athletes in the response time (RT) test. Twenty-five male karate athletes (24.9 ± 4.9 years) and 25 matched non-athletes (26.2 ± 4.5 years) were recruited. Using TMS, we investigated cortico-spinal system excitability. Compared with controls, the athletes showed faster RT (p < 0.001), lower rMT (p < 0.01), shorter MEP latency (p < 0.01), and higher MEP amplitude (p < 0.01); moreover, there was a significant positive linear correlation between RT and rMT (p < 0.001), between RT and MEP latency (p < 0.0001), and a negative correlation between RT and MEP amplitude (p < 0.001). The practice of competitive sports affects both the central and peripheral nervous system. Subjects that showed higher cortical excitability showed also higher velocity, at which the neural signal is propagated from the motor cortex to the muscle and consequently better RT. The lower rMT and the shorter MEP latency observed in athletes support the effects of training in determining specific brain organizations to meet specific sport challenges.


Asunto(s)
Potenciales Evocados Motores/fisiología , Artes Marciales/fisiología , Tractos Piramidales/fisiología , Tiempo de Reacción/fisiología , Adulto , Electromiografía , Humanos , Estimulación Magnética Transcraneal , Adulto Joven
10.
Membranes (Basel) ; 13(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999364

RESUMEN

The calcium ion (Ca2+) has been linked to type 2 diabetes mellitus (T2DM), although the role of Ca2+ in this disorder is the subject of intense investigation. Serum Ca2+ dyshomeostasis is associated with the development of insulin resistance, reduced insulin sensitivity, and impaired glucose tolerance. However, the molecular mechanisms involving Ca2+ ions in pancreatic ß-cell loss and subsequently in T2DM remain poorly understood. Implicated in the decline in ß-cell functions are aggregates of human islet amyloid polypeptide (hIAPP), a small peptide secreted by ß-cells that shows a strong tendency to self-aggregate into ß-sheet-rich aggregates that evolve toward the formation of amyloid deposits and mature fibrils. The soluble oligomers of hIAPP can permeabilize the cell membrane by interacting with bilayer lipids. Our study aimed to evaluate the effect of Ca2+ on the ability of the peptide to incorporate and form ion channels in zwitterionic planar lipid membranes (PLMs) composed of palmitoyl-oleoyl-phosphatidylcholine (POPC) and on the aggregation process of hIAPP molecules in solution. Our results may help to clarify the link between Ca2+ ions, hIAPP peptide, and consequently the pathophysiology of T2DM.

11.
Diagnostics (Basel) ; 13(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37443685

RESUMEN

Osteoporosis is a common musculoskeletal disorder among the elderly and a chronic condition which, like many other chronic conditions, requires long-term clinical management. It is caused by many factors, including lifestyle and obesity. Bioelectrical impedance analysis (BIA) is a method to estimate body composition based on a weak electric current flow through the body. The measured voltage is used to calculate body bioelectrical impedance, divided into resistance and reactance, which can be used to estimate body parameters such as total body water (TBW), fat-free mass (FFM), fat mass (FM), and muscle mass (MM). This study aims to find the tendency of osteoporosis in obese subjects, presenting a method based on hierarchical clustering, which, using BIA parameters, can group patients who show homogeneous characteristics. Grouping similar patients into clusters can be helpful in the field of medicine to identify disorders, pathologies, or more generally, characteristics of significant importance. Another added value of the clustering process is the possibility to define cluster prototypes, i.e., imaginary patients who represent models of "states", which can be used together with clustering results to identify subjects with similar characteristics in a classification context. The results show that hierarchical clustering is a method that can be used to provide the detection of states and, consequently, supply a more personalized medicine approach. In addition, this method allowed us to elect BIA as a potential prognostic and diagnostic instrument in osteoporosis risk development.

12.
Brain Sci ; 13(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37239206

RESUMEN

Agomelatine (AGM) is one of the latest atypical antidepressants, prescribed exclusively for the treatment of depression in adults. AGM belongs to the pharmaceutical class of melatonin agonist and selective serotonin antagonist ("MASS"), as it acts both as a selective agonist of melatonin receptors MT1 and MT2, and as a selective antagonist of 5-HT2C/5-HT2B receptors. AGM is involved in the resynchronization of interrupted circadian rhythms, with beneficial effects on sleep patterns, while antagonism on serotonin receptors increases the availability of norepinephrine and dopamine in the prefrontal cortex, with an antidepressant and nootropic effect. The use of AGM in the pediatric population is limited by the scarcity of data. In addition, few studies and case reports have been published on the use of AGM in patients with attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Considering this evidence, the purpose of this review is to report the potential role of AGM in neurological developmental disorders. AGM would increase the expression of the cytoskeleton-associated protein (ARC) in the prefrontal cortex, with optimization of learning, long-term memory consolidation, and improved survival of neurons. Another important feature of AGM is the ability to modulate glutamatergic neurotransmission in regions associated with mood and cognition. With its synergistic activity a melatoninergic agonist and an antagonist of 5-HT2C, AGM acts as an antidepressant, psychostimulant, and promoter of neuronal plasticity, regulating cognitive symptoms, resynchronizing circadian rhythms in patients with autism, ADHD, anxiety, and depression. Given its good tolerability and good compliance, it could potentially be administered to adolescents and children.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35206443

RESUMEN

Obesity is characterized by an energy imbalance and by the accumulation of visceral adipose tissue. The energy balance is controlled by a complex set of balanced physiological systems that provide hunger and satiety signals to the brain and regulate the body's ability to consume energy. The central nervous system controls the metabolic state, influencing the activity of other systems and receiving information from them. Heart rate variability (HRV) is the natural variability of the heart rate in response to several factors. HRV is related to the interaction between the SNS and the parasympathetic. In the light of this evidence, the aim of this study is to investigate the possible effects of the two different dietary regimens such as very low-calorie ketogenic diet (VLCKD) vs. low caloric diet (LCD), on the functions of the nervous system, with particular attention to the autonomous control of heart rate variability (HRV). A total of 26 obese subjects underwent diet therapy in order to reduce body weight; they were also randomly divided into two groups: the VLCKD group and the LCD group. Our results showed that in both groups, there is a reduction in heart rate as an indicator of sympathetic activity; we found a statistically significant variation only in the VLCKD group. Therefore, this study supports the notion that the sympathovagal balance can be modulated by a specific diet, but further studies are needed to clarify the molecular pathway undergoing this modulation.


Asunto(s)
Dieta Cetogénica , Restricción Calórica/métodos , Dieta Cetogénica/métodos , Frecuencia Cardíaca , Humanos , Obesidad/metabolismo , Pérdida de Peso
14.
Life (Basel) ; 12(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35743815

RESUMEN

Lung cancer is the most lethal cancer: it has a significant incidence and low survival rates. Lifestyle has an important influence on cancer onset and its progression, indeed environmental factors and smoke are involved in cancer establishment, and in lung cancer. Physical activity is a determinant in inhibiting or slowing lung cancer. Certainly, the inflammation is a major factor responsible for lung cancer establishment. In this scenario, regular physical activity can induce anti-inflammatory effects, reducing ROS production and stimulating immune cell system activity. On lung function, physical activity improves lung muscle strength, FEV1 and forced vital capacity. In lung cancer patients, it reduces dyspnea, fatigue and pain. Data in the literature has shown the effects of physical activity both in in vivo and in vitro studies, reporting that its anti-inflammatory action is determinant in the onset of human diseases such as lung cancer. It has a beneficial effect not only in the prevention of lung cancer, but also on treatment and prognosis. For these reasons, it is retained as an adjuvant in lung cancer treatment both for the administration and prognosis of this type of cancer. The purpose of this review is to analyze the role of physical activity in lung cancer and to recommend regular physical activity and lifestyle changes to prevent or treat this pathology.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36141782

RESUMEN

BACKGROUND: The relationship binding body weight to psychological well-being is unclear. The present study aims at identifying the contribution, and specificity, of some dimensions (i.e., eating-related symptoms, body image disorders, eating habits, personality traits, and emotional difficulties) characterizing the psychological profile of obese adolescents (749 participants, 325 females; 58.3% normal-weight, 29.9% overweight, and 11.7% obese; mean age = 16.05, SD = 0.82). METHODS: By introducing the scores obtained by standardized self-report tools into a generalized linear model, a factorial reduction design was used to detect the best fitting discriminant functions and the principal components explaining the higher proportion of the variance. RESULTS: We found two discriminant functions correctly classifying 87.1% of normal-weight, 57.2% of overweight, and 68.2% of obese adolescents. Furthermore, two independent factors, explaining 69.68% of the total variance, emerged. CONCLUSIONS: The first factor, "Body Image Concerns", included the drive for thinness, body dissatisfaction, and interpersonal distrust. The second factor, "Selective Depersonalization", included a trend toward depersonalization and dissatisfaction with the torso. The neurophysiological implications of our findings will be discussed.


Asunto(s)
Imagen Corporal , Obesidad Infantil , Adolescente , Imagen Corporal/psicología , Índice de Masa Corporal , Peso Corporal , Despersonalización , Femenino , Humanos , Sobrepeso/epidemiología , Sobrepeso/psicología , Proyectos Piloto
17.
Healthcare (Basel) ; 10(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36141419

RESUMEN

BACKGROUND: Stay-at-home orders in response to the Coronavirus 2 (SARS-CoV-2) pandemic have forced abrupt changes to daily routines. The aim of this study is to describe the behavior of lifestyles of individuals with obesity on the waiting list for bariatric surgery in the Department of Medical and Surgical Sciences of University of Foggia during the COVID-19 pandemic. MATERIALS AND METHODS: From June 2020 to December 2020 an online survey format was administered to all the patients (n = 52) enrolled for bariatric surgery subjects with obesity, to obtain information about the COVID-19 pandemic's impact on patients with obesity starting 9 March 2020 until 18 May 2020. RESULTS: Our data showed that 58% of patients stated that the pandemic negatively affected their mood, 60% of patients confirmed that they changed their dietary behaviors during the stay-at-home period, as they consumed more unhealthy foods or spent less time cooking home cooked meals. In addition, 71% of patients stated that the closure of the gyms worsened their obesity condition and their mental well-being with an increase of a feeling of anxiety. CONCLUSIONS: Results showed that the COVID-19 pandemic has had a significant impact on health behaviors, including quality of life, mental health physical activity, weight maintenance, and consumption of sweets in obese patients.

18.
Neuroimage ; 58(2): 698-707, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21704716

RESUMEN

It is well known that resting state regional cerebral blood flow is abnormal in obese when compared to normal-weight subjects but the underlying neurophysiological mechanisms are poorly known. To address this issue, we tested the hypothesis that amplitude of resting state cortical electroencephalographic (EEG) rhythms differ among underweight, normal-weight, and overweight/obese subjects as a reflection of the relationship between cortical neural synchronization and regulation of body weight. Eyes-closed resting state EEG data were recorded in 16 underweight subjects, 25 normal-weight subjects, and 18 overweight/obese subjects. All subjects were psychophysically healthy (no eating disorders or major psychopathologies). EEG rhythms of interest were delta (2-4Hz), theta (4-8Hz), alpha 1 (8-10.5Hz), alpha 2 (10.5-13Hz), beta 1 (13-20Hz), beta 2 (20-30Hz), and gamma (30-40Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that parietal and temporal alpha 1 sources fitted the pattern underweight>normal-weight>overweight/obese (p<0.004), whereas occipital alpha 1 sources fitted the pattern normal-weight>underweight>overweight/obese (p<0.00003). Furthermore, amplitude of the parietal, occipital, and temporal alpha 2 sources was stronger in the normal-weight subjects than in the underweight and overweight/obese subjects (p<0.0007). These results suggest that abnormal weight in healthy overweight/obese subjects is related to abnormal cortical neural synchronization at the basis of resting state alpha rhythms and fluctuation of global brain arousal.


Asunto(s)
Peso Corporal/fisiología , Corteza Cerebral/fisiología , Electroencefalografía , Obesidad/fisiopatología , Sobrepeso/fisiopatología , Adolescente , Adulto , Ritmo alfa/fisiología , Análisis de Varianza , Antropometría , Nivel de Alerta/fisiología , Índice de Masa Corporal , Sincronización Cortical , Interpretación Estadística de Datos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Valores de Referencia , Adulto Joven
19.
Artículo en Inglés | MEDLINE | ID: mdl-34886216

RESUMEN

Polycystic ovary syndrome (PCOS) is a commonly occurring endocrine disorder characterized by hirsutism, anovulation, and polycystic ovaries. Often comorbid with insulin resistance, dyslipidemia, and obesity, it also carries significant risk for the development of cardiovascular and metabolic sequelae, including diabetes and metabolic syndrome. The relationship between central obesity and the development of insulin resistance is widely verified. Adipose tissue excess and the coexistent dysregulation of adipocyte functions directly contribute to the pathogenesis of the metabolic complications observed in women with PCOS. In the light of these evidence, the most therapeutic option prescribed to obese women with PCOS, regardless of the phenotype e from the severity of clinical expression, is lifestyle correction by diet and physical activity. The aim of this study is to evaluate the beneficial effects of ketogenic diet in 17 obese women with PCOS. Our results showed that the ketogenic diet inducing therapeutic ketosis, improves the anthropometric and many biochemical parameters such as LH, FSH, SHBG, insulin sensitivity and HOMA index. In addition, it induces a reduction in androgenic production, whereas the contextual reduction of fat mass reduced the acyclic production of estrogens deriving from the aromatization in the adipose tissue of the androgenic excess, with an improvement of the LH/FSH ratio. This is the first study on the effects of the ketogenic diet on PCOS, however, further studies are needed to elucidate the mechanism underlying ketogenic diet effects.


Asunto(s)
Dieta Cetogénica , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Índice de Masa Corporal , Femenino , Humanos , Insulina , Obesidad/complicaciones , Sobrepeso
20.
J Clin Med ; 10(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34575351

RESUMEN

Adipose tissue is considered an endocrine organ, and its excess compromises the immune response and metabolism of hormones and nutrients. Furthermore, the accumulation of visceral fat helps to increase the synthesis of cortisol. The hypothalamus-pituitary-adrenal (HPA) axis is a neuroendocrine system involved in maintaining homeostasis in humans under physiological conditions and stress, and cortisol is the main hormone of the HPA axis. It is known that a stress-induced diet and cortisol reactivity to acute stress factors may be related to dietary behavior. In obesity, to reduce visceral adipose tissue, caloric restriction is a valid strategy. In light of this fact, the aim of this study was to assess the effects of a commercial dietary ketosis program for weight loss on the sympathetic nervous system and HPA axis, through evaluation of salivary cortisol and GSR levels. Thirty obese subjects were recruited and assessed before and after 8 weeks of Very Low Calorie Ketogenic Diet (VLCKD) intervention to evaluate body composition and biochemical parameters. Salivary cortisol levels and GSR significantly decreased after dietary treatment; in addition, body composition and biochemical features were ameliorated. The VLCKD had a short-term positive effect on the SNS and HPA axes regulating salivary cortisol levels. Finally, the effects of the VLCKD on the SNS and HPA axis may lead to more individualized treatment strategies that integrate obesity and stress and support the usefulness of such therapeutic interventions in promoting the reduction of the individual disease burden.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA