Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurobiol Dis ; 60: 11-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23969236

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease, resulting in selective motor neuron degeneration and paralysis. Patients die approximately 3-5 years after diagnosis. Disease pathophysiology is multifactorial, including excitotoxicity, but is not yet fully understood. Genetic analysis has proven fruitful in the past to further understand genes modulating the disease and increase knowledge of disease mechanisms. Here, we revisit a previously performed microsatellite analysis in ALS and focus on another hit, PLCD1, encoding phospholipase C delta 1 (PLCδ1), to investigate its role in ALS. PLCδ1 may contribute to excitotoxicity as it increases inositol 1,4,5-trisphosphate (IP3) formation, which releases calcium from the endoplasmic reticulum through IP3 receptors. We find that expression of PLCδ1 is increased in ALS mouse spinal cord and in neurons from ALS mice. Furthermore, genetic ablation of this protein in ALS mice significantly increases survival, but does not affect astrogliosis, microgliosis, aggregation or the amount of motor neurons at end stage compared to ALS mice with PLCδ1. Interestingly, genetic ablation of PLCδ1 prevents nuclear shrinkage of motor neurons in ALS mice at end stage. These results indicate that PLCD1 contributes to ALS and that PLCδ1 may be a new target for future studies.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Fosfolipasa C delta/genética , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Fosfolipasa C delta/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Análisis de Supervivencia
2.
Hum Mol Genet ; 18(3): 472-81, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18996918

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a spontaneous, relentlessly progressive motor neuron disease, usually resulting in death from respiratory failure within 3 years. Variation in the genes SOD1 and TARDBP accounts for a small percentage of cases, and other genes have shown association in both candidate gene and genome-wide studies, but the genetic causes remain largely unknown. We have performed two independent parallel studies, both implicating the RNA polymerase II component, ELP3, in axonal biology and neuronal degeneration. In the first, an association study of 1884 microsatellite markers, allelic variants of ELP3 were associated with ALS in three human populations comprising 1483 people (P=1.96 x 10(-9)). In the second, an independent mutagenesis screen in Drosophila for genes important in neuronal communication and survival identified two different loss of function mutations, both in ELP3 (R475K and R456K). Furthermore, knock down of ELP3 protein levels using antisense morpholinos in zebrafish embryos resulted in dose-dependent motor axonal abnormalities [Pearson correlation: -0.49, P=1.83 x 10(-12) (start codon morpholino) and -0.46, P=4.05 x 10(-9) (splice-site morpholino), and in humans, risk-associated ELP3 genotypes correlated with reduced brain ELP3 expression (P=0.01). These findings add to the growing body of evidence implicating the RNA processing pathway in neurodegeneration and suggest a critical role for ELP3 in neuron biology and of ELP3 variants in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Variación Genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Población Blanca/genética , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Front Cell Neurosci ; 7: 249, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24368896

RESUMEN

Beta-2 microglobulin (ß2m) is an essential component of the major histocompatibility complex (MHC) class I proteins and in the nervous system ß2m is predominantly expressed in motor neurons. As ß2m can promote nerve regeneration, we investigated its potential role in amyotrophic lateral sclerosis (ALS) by investigating its expression level as well as the effect of genetically removing ß2m on the disease process in mutant superoxide dismutase 1 (SOD1 (G93A) ) mice, a model of ALS. We observed a strong upregulation of ß2m in motor neurons during the disease process and ubiquitous removal of ß2m dramatically shortens the disease duration indicating that ß2m plays an essential and positive role during the disease process. We hypothesize that ß2m contributes to plasticity that is essential for muscle reinnervation. Absence of this plasticity will lead to faster muscle denervation and counteracting this process could be a relevant therapeutic target.

4.
Nat Med ; 18(9): 1418-22, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22922411

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Disease onset and progression are variable, with survival ranging from months to decades. Factors underlying this variability may represent targets for therapeutic intervention. Here, we have screened a zebrafish model of ALS and identified Epha4, a receptor in the ephrin axonal repellent system, as a modifier of the disease phenotype in fish, rodents and humans. Genetic as well as pharmacological inhibition of Epha4 signaling rescues the mutant SOD1 phenotype in zebrafish and increases survival in mouse and rat models of ALS. Motor neurons that are most vulnerable to degeneration in ALS express higher levels of Epha4, and neuromuscular re-innervation by axotomized motor neurons is inhibited by the presence of Epha4. In humans with ALS, EPHA4 expression inversely correlates with disease onset and survival, and loss-of-function mutations in EPHA4 are associated with long survival. Furthermore, we found that knockdown of Epha4 also rescues the axonopathy induced by expression of mutant TAR DNA-binding protein 43 (TDP-43), another protein causing familial ALS, and the axonopathy induced by knockdown of survival of motor neuron 1, a model for spinomuscular atrophy. This suggests that Epha4 generically modulates the vulnerability of (motor) neurons to axonal degeneration and may represent a new target for therapeutic intervention.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Neuronas Motoras/patología , Fenotipo , Receptor EphA4/metabolismo , Transducción de Señal/fisiología , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Análisis de Varianza , Animales , Secuencia de Bases , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Morfolinos/genética , Neuronas Motoras/metabolismo , Ratas , Prueba de Desempeño de Rotación con Aceleración Constante , Análisis de Secuencia de ADN , Estadísticas no Paramétricas , Superóxido Dismutasa-1 , Pez Cebra
5.
PLoS One ; 5(10): e13368, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20967127

RESUMEN

Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43) is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal lobe dementia (FTLD). These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation) induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.


Asunto(s)
Axones/patología , Proteínas de Unión al ADN/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Mutación , Animales , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Progranulinas , Superóxido Dismutasa/genética , Pez Cebra/embriología
6.
J Cell Biol ; 181(1): 37-41, 2008 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-18378771

RESUMEN

Recently, mutations in the progranulin (PGRN) gene were found to cause familial and apparently sporadic frontotemporal lobe dementia (FTLD). Moreover, missense changes in PGRN were identified in patients with motor neuron degeneration, a condition that is related to FTLD. Most mutations identified in patients with FTLD until now have been null mutations. However, it remains unknown whether PGRN protein levels are reduced in the central nervous system from such patients. The effects of PGRN on neurons also remain to be established. We report that PGRN levels are reduced in the cerebrospinal fluid from FTLD patients carrying a PGRN mutation. We observe that PGRN and GRN E (one of the proteolytic fragments of PGRN) promote neuronal survival and enhance neurite outgrowth in cultured neurons. These results demonstrate that PGRN/GRN is a neurotrophic factor with activities that may be involved in the development of the nervous system and in neurodegeneration.


Asunto(s)
Demencia/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuritas/metabolismo , Neuronas/citología , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular , Humanos , Péptidos y Proteínas de Señalización Intercelular/líquido cefalorraquídeo , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Progranulinas , Ratas , Ratas Wistar
7.
Hum Mol Genet ; 16(19): 2359-65, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17636250

RESUMEN

The development of small animal models is of major interest to unravel the pathogenesis and treatment of neurodegenerative diseases, especially because of their potential in large-scale chemical and genetic screening. We have investigated the zebrafish as a model to study amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by the selective loss of motor neurons, caused by mutations in superoxide dismutase 1 (SOD1) in a subset of patients. Overexpression of mutant human SOD1 in zebrafish embryos induced a motor axonopathy that was specific, dose-dependent and found for all mutations studied. Moreover, using this newly established animal model for ALS, we investigated the role of a known modifier in the disease: vascular endothelial growth factor (VEGF). Lowering VEGF induced a more severe phenotype, whereas upregulating VEGF rescued the mutant SOD1 axonopathy. This novel zebrafish model underscores the potential of VEGF for the treatment of ALS and furthermore will permit large-scale genetic and chemical screening to facilitate the identification of new therapeutic targets in motor neuron disease.


Asunto(s)
Enfermedad de la Neurona Motora/genética , Mutación , Superóxido Dismutasa/genética , Animales , Western Blotting , Humanos , Inmunohistoquímica , Enfermedad de la Neurona Motora/enzimología , Enfermedad de la Neurona Motora/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA