Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Exp Hypertens ; 44(5): 411-418, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442839

RESUMEN

OBJECTIVES: This study aims to investigate the anti-hypertensive effects of aqueous extract of Callisia fragrans and their underlying mechanism using a two-kidney one-clip (2K1C) model of reno-vascular hypertension in rats. METHODS: The reno-vascular hypertensive rats were treated with C. fragrans leaf extract (100 and 500 mg/kg; p.o.) and a reference drug, captopril (20 mg/kg; p.o.), for 4 weeks. The blood pressure and heart rate were recorded using a tail-cuff. The heart weight, left ventricular wall thickness, and serum creatinine and urea levels were measured. A spectrophotometric assay was used to analyze the angiotensin-converting enzyme (ACE) inhibition activity of the extract and the reference drug. The total volume and the concentration of sodium, potassium, and chloride in urine samples were evaluated. RESULTS: C. fragrans extract significantly reduced both systolic and diastolic blood pressures in the reno-vascular hypertensive rats. No significant difference in the heart rate was observed between each animal group. C. fragrans extract reduced the 2K1C-induced increase in the heart and body weight ratio and the left ventricular wall thickness. Moreover, the extract also attenuated the increase in serum urea induced by the 2K1C treatment. C. fragrans extract inhibited ACE activity in vitro with an IC50 of 20.97 ± 3.94 µg/ml. The urine output and urinary electrolyte excretion significantly increased in C. fragrans extract-treated rats. CONCLUSIONS: These findings demonstrated that C. fragrans extract can mitigate hypertension and alleviate ventricular hypertrophy and renal dysfunction in reno-vascular hypertensive rats, at least in part via ACE activity inhibition and diuretic property.


Asunto(s)
Hipertensión Renovascular , Hipertensión , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Presión Sanguínea , Hipertensión/tratamiento farmacológico , Riñón , Ratas , Urea
2.
In Vitro Cell Dev Biol Anim ; 50(4): 321-30, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24163162

RESUMEN

Skin aging is the result of internal and external factors. So-called photoaging has been identified as the major factor in skin aging. Effects of photoaging include inhibition of fibroblast and keratinocyte proliferation as well as collagen and fibronectin expression, while activating expression of collagenases such as matrix metalloproteinase-1. Previous studies have shown that extracts or products from human placenta significantly improve skin aging and chronic wound healing. However, there are few studies of umbilical cord extracts. Therefore, this study aimed to evaluate the effects of umbilical cord extract-derived formulae on three kinds of skin cells including fibroblasts, keratinocytes, and melanocytes. We prepared 20 formulae from intracellular umbilical cord extracts, extracellular umbilical cord extracts, and umbilical cord-derived stem cell extracts, as well as five control formulae. We evaluated the effects of the 25 formulae on fibroblast and keratinocyte proliferation, and expression of collagen I, fibronectin, and matrix metalloproteinase-1 in fibroblasts and tyrosinase in melanocytes. The results showed that 7.5% formula 35 was the most effective formula for promotion of fibroblast and keratinocyte proliferation. At this concentration, formula 35 also induced collagen expression and inhibited matrix metalloproteinase-1 expression at the transcriptional level. However, this formula had no effect on tyrosinase expression in melanocytes. These results demonstrate that umbilical cord extracts can serve as an attractive source of proteins for skincare and chronic wound healing products.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Extractos de Tejidos/administración & dosificación , Cordón Umbilical/química , Colágeno Tipo I/biosíntesis , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibronectinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Metaloproteinasa 1 de la Matriz/biosíntesis , Melanocitos/citología , Melanocitos/efectos de los fármacos , Extractos de Tejidos/química
3.
Onco Targets Ther ; 5: 77-84, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22649280

RESUMEN

BACKGROUND: Breast cancer stem cells with a CD44(+)CD24(-) phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44(+)CD24(-) breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment. METHODS: Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44(+)CD24(-) cells. To track CD44(+)CD24(-) cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control. RESULTS: The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was significantly decreased by 4.38-fold compared with that of the control group. CONCLUSION: These results support a new strategy for breast cancer treatment by combining gene therapy with chemotherapy.

4.
Biol. Res ; 47: 1-15, 2014. ilus, graf, tab
Artículo en Inglés | LILACS | ID: biblio-950766

RESUMEN

BACKGROUND: Vascular endothelial growth factor (VEGF) is involved in the growth of new blood vessels that feed tumors and kinesin spindle protein (KSP) plays a critical role in mitosis involving in cell proliferation. Simultaneous silencing of VEGF and KSP, an attractive and viable approach in cancer, leads on restricting cancer progression. The purpose of this study is to examine the therapeutic potential of dual gene targeted siRNA cocktail on human hepatocellular carcinoma Hep3B cells. RESULTS: The predesigned siRNAs could inhibit VEGF and KSP at mRNA level. siRNA cocktail showed a further downregulation on KSP mRNA and protein levels compared to KSP-siRNA or VEGF-siRNA, but not on VEGF expression. It also exhibited greater suppression on cell proliferation as well as cell migration or invasion capabilities and induction of apoptosis in Hep3B cells than single siRNA simultaneously. This could be explained by the significant downregulation of Cyclin D1, Bcl-2 and Survivin. However, no sigificant difference in the mRNA and protein levels of ANG2, involving inhibition of angiogenesis was found in HUVECs cultured with supernatant of Hep3B cells treated with siRNA cocktail, compared to that of VEGF-siRNA. CONCLUSION: Silencing of VEGF and KSP plays a key role in inhibiting cell proliferation, migration, invasion and inducing apoptosis of Hep3B cells. Simultaneous silencing of VEGF and KSP using siRNA cocktail yields promising results for eradicating hepatocellular carcinoma cells, a new direction for liver cancer treatment.


Asunto(s)
Humanos , Cinesinas/genética , Apoptosis/genética , Silenciador del Gen , ARN Interferente Pequeño/genética , Factor A de Crecimiento Endotelial Vascular/genética , Proliferación Celular/genética , Sales de Tetrazolio , Transfección , Inhibidores de Cisteína Proteinasa/metabolismo , Regulación hacia Abajo , Movimiento Celular , Western Blotting , Cinesinas/metabolismo , Anexina A5 , Genes bcl-2 , Ciclina D1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Línea Celular Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Citometría de Flujo , Survivin , Mitosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA