Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Bioinformatics ; 16: 330, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26472075

RESUMEN

BACKGROUND: The goal of this survey paper is to overview cellular measurements using optical microscopy imaging followed by automated image segmentation. The cellular measurements of primary interest are taken from mammalian cells and their components. They are denoted as two- or three-dimensional (2D or 3D) image objects of biological interest. In our applications, such cellular measurements are important for understanding cell phenomena, such as cell counts, cell-scaffold interactions, cell colony growth rates, or cell pluripotency stability, as well as for establishing quality metrics for stem cell therapies. In this context, this survey paper is focused on automated segmentation as a software-based measurement leading to quantitative cellular measurements. METHODS: We define the scope of this survey and a classification schema first. Next, all found and manually filteredpublications are classified according to the main categories: (1) objects of interests (or objects to be segmented), (2) imaging modalities, (3) digital data axes, (4) segmentation algorithms, (5) segmentation evaluations, (6) computational hardware platforms used for segmentation acceleration, and (7) object (cellular) measurements. Finally, all classified papers are converted programmatically into a set of hyperlinked web pages with occurrence and co-occurrence statistics of assigned categories. RESULTS: The survey paper presents to a reader: (a) the state-of-the-art overview of published papers about automated segmentation applied to optical microscopy imaging of mammalian cells, (b) a classification of segmentation aspects in the context of cell optical imaging, (c) histogram and co-occurrence summary statistics about cellular measurements, segmentations, segmented objects, segmentation evaluations, and the use of computational platforms for accelerating segmentation execution, and (d) open research problems to pursue. CONCLUSIONS: The novel contributions of this survey paper are: (1) a new type of classification of cellular measurements and automated segmentation, (2) statistics about the published literature, and (3) a web hyperlinked interface to classification statistics of the surveyed papers at https://isg.nist.gov/deepzoomweb/resources/survey/index.html.


Asunto(s)
Algoritmos , Imagen Óptica , Animales , Automatización , Humanos , Microscopía
2.
Computer (Long Beach Calif) ; 49(7): 70-79, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28663600

RESUMEN

Microscopy could be an important tool for characterizing stem cell products if quantitative measurements could be collected over multiple spatial and temporal scales. With the cells changing states over time and being several orders of magnitude smaller than cell products, modern microscopes are already capable of imaging large spatial areas, repeat imaging over time, and acquiring images over several spectra. However, characterizing stem cell products from such large image collections is challenging because of data size, required computations, and lack of interactive quantitative measurements needed to determine release criteria. We present a measurement web system consisting of available algorithms, extensions to a client-server framework using Deep Zoom, and the configuration know-how to provide the information needed for inspecting the quality of a cell product. The cell and other data sets are accessible via the prototype web-based system at http://isg.nist.gov/deepzoomweb.

3.
Stem Cell Res ; 17(1): 122-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27286574

RESUMEN

Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling, we examined >680 colonies from 3 different preparations of cells over 5days each, generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies, correlation of colony characteristics with Oct4 expression, and identification of rare events.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Imagen de Lapso de Tiempo , Línea Celular , Células Madre Embrionarias Humanas/metabolismo , Humanos , Programas Informáticos
4.
Micros Today ; 21(Suppl 3): 89-90, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28663719

RESUMEN

This article introduces readers to a web-based solution useful for interactive nanoscale measurements of centimeter-sized specimens. This solution is a client-server system that promotes collaborative measurements and discovery. The system consists of multiple computational modules that enable uploading microscopy images, extracting metadata, assembling many nanometer-resolution images into an image covering a centimeter-sized area, and interactive viewing and measuring of objects of interest at multiple length scales over terabyte-sized images. We illustrate the use of the system on images of aerosolized nanoparticles and dye particles on printing paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA