Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 12(38): 11938-43, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20714598

RESUMEN

Single- and double-walled magnetic nanotubes are obtained in a one-step liquid phase reaction by the cooperative self-assembly of chiral amphiphiles and nanoparticles on cooling of heated mixtures of N-dodecanoyl-L-serine and Fe(3)O(4) nanoparticles in toluene. The nanotubes are composed of well-ordered, close-packed nanoparticle assemblies, and can be transformed into chiral magnetic nanostructures, such as helical coils, by subsequent calcination. The nanoparticle assemblies and their variations on calcination are attributed to the collective organization of the surfactant molecules adsorbed on the nanoparticles and the freely dispersed chiral molecules, and the dewetting effects guided by the primitive constitution of the chiral amphiphilic molecular assemblies.

2.
J Nanosci Nanotechnol ; 8(11): 6065-74, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19198347

RESUMEN

Since its invention in 1991, premixed combustion synthesis of fullerenic materials has been established as the major industrial process for manufacturing of these materials. Large-scale production of fullerenes such as C60, C70 and C84 has been implemented. More recently, combustion technology has been extended to the targeted synthesis of single-walled carbon nanotubes (SWCNT). Addition of catalyst precursor and operation at well-controlled fuel-rich but non-sooting conditions are required. Extensive parametric studies have allowed for the optimization of the formation of high-quality SWCNT. Purification techniques previously reported in the literature have been adjusted and used successfully for the nearly complete removal of metal and metal oxide. Material has been characterized using Raman spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Correlations between process conditions and nanotube properties such as length have been established. Product reproducibility and process scalability of the combustion process have been demonstrated. Sample preparation was found to affect significantly the apparent characteristics of nanotubes as seen in electron microscopy images.


Asunto(s)
Cristalización/métodos , Nanotecnología/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Titanio/química , Gases/química , Calor , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
3.
J Phys Chem B ; 109(25): 12337-46, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16852523

RESUMEN

Carbon nanotubes are observed to form under a wide range of temperatures, pressures, reactive agents, and catalyst metals. In this paper we attempt to rationalize this body of observations reported in the literature in terms of fundamental processes driving nanotube formation. Many of the observed effects can be attributed to the interaction of three key processes: surface catalysis and deposition of carbon, diffusive transport of carbon, and precipitation effects. A new nanotube formation mechanism is proposed that describes the nanotube structures observed experimentally in a premixed flame and can account for certain shortcomings of the prevailing mechanism that has been repeatedly applied to explain nanotube formation in nonflame environments. The interacting particle model (IPM) attributes the initiation of nanotube growth to the physical interaction between catalyst particles. Coalescence of two (or more) catalyst particles leads to partial blocking of the particle surface, causing a disparity in carbon deposition over the particle surface. The resulting concentration gradient generates a net diffusive flux toward the interparticle contact point. Dimers that separate in this condition can support continuous nanotube growth between the particles. The model can also be extended to multiple particles to account for more complex morphologies. The IPM is consistent with many of the structures observed in the flame-produced material. The validity of the model is evaluated through analysis of diffusion dynamics and a force analysis of particle binding and separation. The IPM is also discussed in relation to identifying the requirements and best conditions to support nanotube growth in the premixed flame. The formation of nanotubes between particles as described by the IPM indicates that a single mechanism cannot completely describe nanotube synthesis; more likely, multiple pathways exist with varying rates that depend on specific process conditions.

4.
Langmuir ; 25(14): 8292-8, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19435297

RESUMEN

The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.

5.
ACS Nano ; 2(9): 1799-806, 2008 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19206418

RESUMEN

Janus nanoparticles have been synthesized consisting of approximately 5 nm magnetite nanoparticles coated on one side with a pH-dependent and temperature-independent polymer (poly(acrylic acid), PAA), and functionalized on the other side by a second (tail) polymer that is either a pH-independent polymer (polystyrene sodium sulfonate, PSSNa) or a temperature-dependent polymer (poly(N-isopropyl acrylamide), PNIPAM). These Janus nanoparticles are dispersed stably as individual particles at high pH values and low temperatures, but can self-assemble at low pH values (PSSNa) or at high temperatures (>31 degrees C) (PNIPAM) to form stable dispersions of clusters of approximately 80-100 nm in hydrodynamic diameter. The Janus nanoparticle compositions were verified using FTIR and XPS, and their structures observed directly by TEM. Their clustering behavior is analyzed by dynamic light scattering and zeta potential measurements.


Asunto(s)
Resinas Acrílicas/química , Cristalización/métodos , Magnetismo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Concentración de Iones de Hidrógeno , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA