Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Neurosci ; 26(6): 1021-1031, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188873

RESUMEN

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.


Asunto(s)
Enfermedad de Alzheimer , Hormonas Hipotalámicas , Ratones , Animales , Enfermedad de Alzheimer/genética , Neuronas/fisiología , Hormonas Hipofisarias , Sueño , Ratones Transgénicos
2.
Elife ; 112022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35532105

RESUMEN

MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.


Asunto(s)
Proteínas del Tejido Nervioso , Receptores AMPA , Moléculas de Adhesión Celular Neuronal/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/fisiología
3.
Nat Commun ; 11(1): 5171, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057002

RESUMEN

Excitatory and inhibitory neurons are connected into microcircuits that generate circuit output. Central in the hippocampal CA3 microcircuit is the mossy fiber (MF) synapse, which provides powerful direct excitatory input and indirect feedforward inhibition to CA3 pyramidal neurons. Here, we dissect its cell-surface protein (CSP) composition to discover novel regulators of MF synaptic connectivity. Proteomic profiling of isolated MF synaptosomes uncovers a rich CSP composition, including many CSPs without synaptic function and several that are uncharacterized. Cell-surface interactome screening identifies IgSF8 as a neuronal receptor enriched in the MF pathway. Presynaptic Igsf8 deletion impairs MF synaptic architecture and robustly decreases the density of bouton filopodia that provide feedforward inhibition. Consequently, IgSF8 loss impairs excitation/inhibition balance and increases excitability of CA3 pyramidal neurons. Our results provide insight into the CSP landscape and interactome of a specific excitatory synapse and reveal IgSF8 as a critical regulator of CA3 microcircuit connectivity and function.


Asunto(s)
Región CA3 Hipocampal/fisiología , Proteínas Portadoras/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Proteínas de la Membrana/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Células Piramidales/fisiología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Cultivo Primario de Células , Proteómica , Ratas , Sinaptosomas/metabolismo
4.
Neuron ; 99(2): 329-344.e7, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29983322

RESUMEN

Pyramidal neurons express rich repertoires of leucine-rich repeat (LRR)-containing adhesion molecules with similar synaptogenic activity in culture. The in vivo relevance of this molecular diversity is unclear. We show that hippocampal CA1 pyramidal neurons express multiple synaptogenic LRR proteins that differentially distribute to the major excitatory inputs on their apical dendrites. At Schaffer collateral (SC) inputs, FLRT2, LRRTM1, and Slitrk1 are postsynaptically localized and differentially regulate synaptic structure and function. FLRT2 controls spine density, whereas LRRTM1 and Slitrk1 exert opposing effects on synaptic vesicle distribution at the active zone. All LRR proteins differentially affect synaptic transmission, and their combinatorial loss results in a cumulative phenotype. At temporoammonic (TA) inputs, LRRTM1 is absent; FLRT2 similarly controls functional synapse number, whereas Slitrk1 function diverges to regulate postsynaptic AMPA receptor density. Thus, LRR proteins differentially control synaptic architecture and function and act in input-specific combinations and a context-dependent manner to specify synaptic properties.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Proteínas de la Membrana/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Técnicas de Cocultivo , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/ultraestructura , Proteínas de la Membrana/análisis , Proteínas de la Membrana/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso , Moléculas de Adhesión de Célula Nerviosa/análisis , Moléculas de Adhesión de Célula Nerviosa/ultraestructura , Ratas , Ratas Wistar , Sinapsis/química , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA