Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 100(2): 869-943, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31625459

RESUMEN

In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma Humano , Gonadotropinas/genética , Gónadas/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Células Neuroendocrinas/fisiología , Reproducción/genética , Animales , Gonadotropinas/metabolismo , Gónadas/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Células Neuroendocrinas/metabolismo , Filogenia , Especificidad de la Especie
2.
Molecules ; 26(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299587

RESUMEN

26RFa is a neuropeptide that activates the rhodopsin-like G protein-coupled receptor QRFPR/GPR103. This peptidergic system is involved in the regulation of a wide array of physiological processes including feeding behavior and glucose homeostasis. Herein, the pharmacological profile of a homogenous library of QRFPR-targeting peptide derivatives was investigated in vitro on human QRFPR-transfected cells with the aim to provide possible insights into the structural determinants of the Phe residues to govern receptor activation. Our work advocates to include in next generations of 26RFa(20-26)-based QRFPR agonists effective substitutions for each Phe unit, i.e., replacement of the Phe22 residue by a constrained 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid moiety, and substitution of both Phe24 and Phe26 by their para-chloro counterpart. Taken as a whole, this study emphasizes that optimized modifications in the C-terminal part of 26RFa are mandatory to design selective and potent peptide agonists for human QRFPR.


Asunto(s)
Sustitución de Aminoácidos , Neuropéptidos , Receptores Acoplados a Proteínas G/agonistas , Animales , Células CHO , Cricetulus , Humanos , Neuropéptidos/química , Neuropéptidos/genética , Neuropéptidos/farmacología , Fenilalanina/química , Fenilalanina/genética , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
3.
Cell Mol Life Sci ; 75(11): 2075-2091, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29264673

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopamine (DA) neurons through apoptotic, inflammatory and oxidative stress mechanisms. The octadecaneuropeptide (ODN) is a diazepam-binding inhibitor (DBI)-derived peptide, expressed by astrocytes, which protects neurons against oxidative cell damages and apoptosis in an in vitro model of PD. The present study reveals that a single intracerebroventricular injection of 10 ng ODN 1 h after the last administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) prevented the degeneration of DA neurons induced by the toxin in the substantia nigra pars compacta of mice, 7 days after treatment. ODN-mediated neuroprotection was associated with a reduction of the number of glial fibrillary acidic protein-positive reactive astrocytes and a strong inhibition of the expression of pro-inflammatory genes such as interleukins 1ß and 6, and tumor necrosis factor-α. Moreover, ODN blocked the inhibition of the anti-apoptotic gene Bcl-2, and the stimulation of the pro-apoptotic genes Bax and caspase-3, induced by MPTP in the substantia nigra pars compacta. ODN also decreased or even in some cases abolished MPTP-induced oxidative damages, overproduction of reactive oxygen species and accumulation of lipid oxidation products in DA neurons. Furthermore, DBI knockout mice appeared to be more vulnerable than wild-type animals to MPTP neurotoxicity. Taken together, these results show that the gliopeptide ODN exerts a potent neuroprotective effect against MPTP-induced degeneration of nigrostriatal DA neurons in mice, through mechanisms involving downregulation of neuroinflammatory, oxidative and apoptotic processes. ODN may, thus, reduce neuronal damages in PD and other cerebral injuries involving oxidative neurodegeneration.


Asunto(s)
Inhibidor de la Unión a Diazepam/uso terapéutico , Neuropéptidos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Fragmentos de Péptidos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Especies Reactivas de Oxígeno/metabolismo
4.
Gen Comp Endocrinol ; 265: 97-105, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28919448

RESUMEN

The brain synthesizes steroids de novo from cholesterol, which are called neurosteroids. Based on extensive studies on neurosteroids over the past thirty years, it is now accepted that neurosteroidogenesis in the brain is a conserved property across vertebrates. However, the formation of bioactive neurosteroids in the brain is still incompletely elucidated in vertebrates. In fact, we recently identified 7α-hydroxypregnenolone (7α-OH PREG) as a novel bioactive neurosteroid stimulating locomotor behavior in the brain of several vertebrates. The follow-up studies have demonstrated that the stimulatory action of brain 7α-OH PREG on locomotor behavior is mediated by the dopaminergic system across vertebrates. More recently, we have further demonstrated that the pineal gland, an endocrine organ located close to the brain, is a major site of the formation of bioactive neurosteroids. In addition to the brain, the pineal gland actively produces 7α-OH PREG de novo from cholesterol as a major pineal neurosteroid that acts on the brain to control locomotor rhythms. This review summarizes the identification, biosynthesis and mode of action of brain and pineal 7α-OH PREG, a new bioactive neurosteroid regulating locomotor behavior, across vertebrates.


Asunto(s)
17-alfa-Hidroxipregnenolona/análogos & derivados , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Actividad Motora/efectos de los fármacos , Glándula Pineal/metabolismo , Vertebrados/metabolismo , 17-alfa-Hidroxipregnenolona/química , 17-alfa-Hidroxipregnenolona/farmacología , Animales , Encéfalo/efectos de los fármacos , Actividad Motora/fisiología , Glándula Pineal/efectos de los fármacos
5.
Pharmacol Rev ; 67(1): 214-58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25535277

RESUMEN

Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.


Asunto(s)
Hormonas Peptídicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Urotensinas/metabolismo , Secuencia de Aminoácidos , Animales , Antagonistas de Hormonas/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Datos de Secuencia Molecular , Hormonas Peptídicas/antagonistas & inhibidores , Hormonas Peptídicas/química , Hormonas Peptídicas/genética , Conformación Proteica , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Relación Estructura-Actividad , Urotensinas/antagonistas & inhibidores , Urotensinas/química , Urotensinas/genética
6.
J Neurochem ; 137(6): 913-30, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26991551

RESUMEN

Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the glioprotective action of Pituitary adenylate cyclase-activating polypeptide (PACAP) against H2 O2 -induced astrocyte damages and cell apoptosis in cultured rat astrocytes. PACAP, through activation of its receptor, PAC1-R, and the protein kinase A (PKA), protein kinase C (PKC), and MAP-kinases signaling pathways, prevents accumulation of ROS and inhibition of SOD and catalase activities. This allows the preservation of mitochondrial membrane integrity and the reduction in caspase-3 activation induced by H2 O2 . These data may lead to the development of new strategies for cerebral injury treatment. Cat, catalase; Cyt. C, cytochrome C; SOD, superoxide dismutase.


Asunto(s)
Antioxidantes/farmacología , Astrocitos/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Oxidantes/toxicidad , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antioxidantes/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Catalasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Factores de Tiempo
7.
Biol Cell ; 107(11): 419-25, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26094971

RESUMEN

BACKGROUND INFORMATION: Tunneling nanotubes (TnTs) are thin plasma membrane bridges mediating transfers of materials and signals between cells. Heterogeneity of heterocellular and homocellular TnTs is largely described but ultrafine imaging of these light-sensitive floating nanometric structures represents a real challenge in microscopy. We propose here imaging strategies designed to dissect structural and dynamic aspects of TnT formation and function in fixed or living PC12 cells. RESULTS: Through time-gated Continuous Wave STimulated Emission Depletion (gCW STED) nanoscopy associated with deconvolution, we provided nanoscale details of membrane and cytoskeleton organisations in two subtypes of TnTs, namely type 1 TnT (TnT1) and type 2 TnT (TnT2). In fixed PC12 cells, TnT1 (length, several tens of micrometres; diameter, 100-650 nm) exhibited a large trumpet-shaped origin, a clear cytosolic tunnel and different bud-shaped connections from closed-ended to open-ended tips. TnT1 contained both actin and tubulin. TnT2 (length, max 20 µm, diameter, 70-200 nm) only contained actin without clear cytosolic tunnel. In living PC12 cells, we observed through gCW STED additional details, unrevealed so far, including a filament spindle emerging from an organising centre at the origin of TnT1 and branched or bulbous attachments of TnT2. However, the power of depletion laser in STED nanoscopy was deleterious for TnTs and prolonged time-lapse experiments were almost prohibited. By circumventing the hazard of photoxicity, we were able to monitor dynamics of bud-shaped tips and intercellular transfer of wheat germ agglutinin labelled cellular elements through time-gated confocal microscopy. CONCLUSIONS: Our work identified new structural characteristics of two subtypes of TnTs in PC12 cells as well as dynamics of formation and transfer through complementary imaging methods combined with image processing. Therefore, we could achieve maximum lateral resolution and sample preservation during acquisitions to reveal new insights into TnT studies. SIGNIFICANCE: Due to large disparity of TnT-like structures in neuronal, immune, cancer or epithelial cells, high- and superresolution approaches can be utilised for full characterisation of these yet poorly understood routes of cell-to-cell communication.


Asunto(s)
Membrana Celular/química , Extensiones de la Superficie Celular/química , Microscopía Confocal/métodos , Imagen de Lapso de Tiempo/métodos , Animales , Comunicación Celular , Membrana Celular/fisiología , Extensiones de la Superficie Celular/fisiología , Células PC12 , Ratas
8.
Gen Comp Endocrinol ; 227: 120-9, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26079790

RESUMEN

It is now clearly established that the central and peripheral nervous systems have the ability to synthesize de novo steroids referred to as neurosteroids. The major evidence for biosynthesis of neuroactive steroids by nervous tissues is based on the expression of enzymes implicated in the formation of steroids in neural cells. The aim of the present review is to summarize the current knowledge regarding the presence of steroidogenic enzymes in the brain of vertebrates and to highlight the very considerable contribution of Professor Kazuyoshi Tsutsui in this domain. The data indicate that expression of steroid-producing enzymes in the brain appeared early during vertebrate evolution and has been preserved from fish to mammals.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Animales , Peces/metabolismo , Mamíferos/metabolismo , Vertebrados/metabolismo
9.
J Neurochem ; 132(6): 629-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25556946

RESUMEN

A major cause of alcohol toxicity is the production of reactive oxygen species generated during ethanol metabolism. The aim of this study was to compare the effect of binge drinking-like alcohol exposure on a panel of genes implicated in oxidative mechanisms in adolescent and adult mice. In adolescent animals, alcohol decreased the expression of genes involved in the repair and protection of oxidative DNA damage such as atr, gpx7, or nudt15 and increased the expression of proapoptotic genes such as casp3. In contrast, in the adult brain, genes activated by alcohol were mainly associated with protective mechanisms that prevent cells from oxidative damage. Whatever the age, iterative binge-like episodes provoked the same deleterious effects as those observed after a single binge episode. In adolescent mice, multiple binge ethanol exposure substantially reduced neurogenesis in the dentate gyrus and impaired short-term memory in the novel object and passive avoidance tests. Taken together, our results indicate that alcohol causes deleterious effects in the adolescent brain which are distinct from those observed in adults. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity. The effects of alcohol exposure were investigated on genes involved in oxidative mechanisms. In adolescent animals, alcohol decreased the expression of genes involved in DNA repair, a potential cause of the observed decrease of neurogenesis. In contrast, in the adult brain, alcohol increased the expression of genes associated with antioxidant mechanisms. Apoptosis was increase in all groups and converged with other biochemical alterations to enhance short-term memory impairment in the adolescent brain. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/sangre , Consumo Excesivo de Bebidas Alcohólicas/genética , Daño del ADN/fisiología , Etanol/toxicidad , Estrés Oxidativo/fisiología , Factores de Edad , Animales , Consumo Excesivo de Bebidas Alcohólicas/psicología , Daño del ADN/efectos de los fármacos , Etanol/administración & dosificación , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos
10.
Pituitary ; 18(5): 738-44, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25183169

RESUMEN

INTRODUCTION: Pituitary gangliocytomas are uncommon neuronal tumours that may present with endocrine disorders, the most frequent being acromegaly caused by growth hormone hypersecretion. Cushing's syndrome is very rarely seen with gangliocytomas. MATERIAL AND METHODS: We report the unique case of a 62 year-old woman whose clinical picture and endocrine testing clearly demonstrated adrenocorticotropin (ACTH)-dependent Cushing's syndrome. Pituitary magnetic resonance imaging showed a 12-mm homogeneous, infra- and retrosellar mass first diagnosed as pituitary macroadenoma. Transsphenoidal surgery was performed and allowed complete resection of the tumour with sparing of normal anterior pituitary. Very low postoperative serum cortisol and ACTH levels were observed in the early postoperative period and the patient is still in remission 18 months after surgery, thus demonstrating that the resected lesion was entirely responsible for the clinical picture. RESULTS: Histological and immunocytochemical analyses demonstrated a benign tumour composed of mature neuronal cells suggestive of a gangliocytoma, expressing both ACTH and corticotropin-releasing hormone (CRH). The tumour was surrounded by a rim of pituitary tissue containing ACTH-producing endocrine cells. Careful analysis of the resected lesion did not reveal any pituitary microadenoma. We search literature for similar cases and retraced only nine cases of gangliocytomas associated with Cushing's syndrome. In most of them, the tumour was combined with either pituitary corticotroph adenoma or hyperplasia. CONCLUSIONS: Our case represents a unique case of an infrasellar pituitary gangliocytoma which was able to cause Cushing's syndrome by both direct ACTH production and CRH-induced stimulation of neighbour normal corticotroph cells.


Asunto(s)
Síndrome de Cushing/etiología , Ganglioneuroma/complicaciones , Neoplasias Hipofisarias/complicaciones , Hormona Adrenocorticotrópica/sangre , Hormona Adrenocorticotrópica/metabolismo , Biopsia , Hormona Liberadora de Corticotropina/sangre , Hormona Liberadora de Corticotropina/metabolismo , Síndrome de Cushing/sangre , Síndrome de Cushing/diagnóstico , Femenino , Ganglioneuroma/sangre , Ganglioneuroma/diagnóstico , Ganglioneuroma/metabolismo , Ganglioneuroma/cirugía , Humanos , Hipofisectomía , Inmunohistoquímica , Imagen por Resonancia Magnética , Persona de Mediana Edad , Neoplasias Hipofisarias/sangre , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/cirugía , Resultado del Tratamiento , Carga Tumoral
11.
Gen Comp Endocrinol ; 210: 107-13, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25449662

RESUMEN

A peptide ending with RFamide (Arg-Phe-amide) was discovered independently by three different laboratories in 2003 and named 26RFa or QRFP. In mammals, a longer version of the peptide, 43 amino acids, was identified and found to bind to the orphan G protein-coupled receptor GPR103. We searched the genome database of Branchiostoma floridae (Bfl) for receptor sequences related to those that bind peptides ending with RFa or RYa (including receptors for NPFF, PRLH, GnIH, and NPY). One receptor clustered in phylogenetic analyses with mammalian QRFP receptors. The gene has 3 introns in Bfl and 5 in human, but all intron positions differ, implying that the introns were inserted independently. A QRFP-like peptide consisting of 25 amino acids and ending with RFa was identified in the amphioxus genome. Eight of the ten last amino acids are identical between Bfl and human. The prepro-QRFP gene in Bfl has one intron in the propeptide whereas the human gene lacks introns. The Bfl QRFP peptide was synthesized and the receptor was functionally expressed in human cells. The response was measured as inositol phosphate (IP) turnover. The Bfl QRFP peptide was found to potently stimulate the receptor's ability to induce IP turnover with an EC50 of 0.28nM. Also the human QRFP peptides with 26 and 43 amino acids were found to stimulate the receptor (1.9 and 5.1nM, respectively). Human QRFP with 26 amino acids without the carboxyterminal amide had dramatically lower potency at 1.3µM. Thus, we have identified an amphioxus QRFP-related peptide and a corresponding receptor and shown that they interact to give a functional response.


Asunto(s)
Anfioxos/genética , Péptidos/genética , Receptores Acoplados a Proteínas G/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular , Intrones , Datos de Secuencia Molecular , Neuropéptidos , Filogenia , Transfección
12.
J Neurochem ; 130(2): 241-54, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24646324

RESUMEN

During early post-natal development of the cerebellum, granule neurons (GN) execute a centripetal migration toward the internal granular layer, whereas basket and stellate cells (B/SC) migrate centrifugally to reach their final position in the molecular layer (ML). We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates in vitro the expression and release of the serine protease tissue-type plasminogen activator (tPA) from GN, but the coordinated role of PACAP and tPA during interneuron migration has not yet been investigated. Here, we show that endogenous PACAP is responsible for the transient arrest phase of GN at the level of the Purkinje cell layer (PCL) but has no effect on B/SC. tPA is devoid of direct effect on GN motility in vitro, although it is widely distributed along interneuron migratory routes in the ML, PCL, and internal granular layer. Interestingly, plasminogen activator inhibitor 1 reduces the migration speed of GN in the ML and PCL, and that of B/SC in the ML. Taken together, these results reveal for the first time that tPA facilitates the migration of both GN and fast B/SC at the level of their intersection in the ML through degradation of the extracellular matrix. Crucial role of tissue plasminogen activator (tPA) in interneuron migration. Interneuron migration is a critical step for normal establishment of neuronal network. This study indicates that, in the post-natal cerebellum, tPA facilitates the opposite migration of immature excitatory granule neurons (GN) and immature inhibitory basket/stellate cells (B/SC) along the same migratory route. These data show that tPA exerts a pivotal role in neurodevelopment.


Asunto(s)
Corteza Cerebelosa/efectos de los fármacos , Corteza Cerebelosa/crecimiento & desarrollo , Cerebelo/efectos de los fármacos , Cerebelo/crecimiento & desarrollo , Interneuronas/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Activador de Tejido Plasminógeno/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Corteza Cerebelosa/citología , Cerebelo/citología , Gránulos Citoplasmáticos/metabolismo , Femenino , Inmunohistoquímica , Masculino , Técnicas de Cultivo de Órganos , Plasminógeno/farmacología , Inhibidor 1 de Activador Plasminogénico/farmacología , Ratas , Ratas Wistar , Activador de Tejido Plasminógeno/metabolismo
13.
J Neurochem ; 131(1): 21-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24899316

RESUMEN

PC12 cells are used to study the signaling mechanisms underlying the neurotrophic and neuroprotective activities of pituitary adenylate cyclase-activating polypeptide (PACAP) and nerve growth factor (NGF). Previous microarray experiments indicated that serpinb1a was the most induced gene after 6 h of treatment with PACAP or NGF. This study confirmed that serpinb1a is strongly activated by PACAP and NGF in a time-dependent manner with a maximum induction (~ 50-fold over control) observed after 6 h of treatment. Co-incubation with PACAP and NGF resulted in a synergistic up-regulation of serpinb1a expression (200-fold over control), suggesting that PACAP and NGF act through complementary mechanisms. Consistently, PACAP-induced serpinb1a expression was not blocked by TrkA receptor inhibition. Nevertheless, the stimulation of serpinb1a expression by PACAP and NGF was significantly reduced in the presence of extracellular signal-regulated kinase, calcineurin, protein kinase A, p38, and PI3K inhibitors, indicating that the two trophic factors share some common pathways in the regulation of serpinb1a. Finally, functional investigations conducted with siRNA revealed that serpinb1a is not involved in the effects of PACAP and NGF on PC12 cell neuritogenesis, proliferation or body cell volume but mediates their ability to block caspases 3/7 activity and to promote PC12 cell survival.


Asunto(s)
Medio de Cultivo Libre de Suero/farmacología , Factor de Crecimiento Nervioso/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Serpinas/biosíntesis , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células PC12 , Ratas
14.
Neurobiol Dis ; 66: 28-42, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24576594

RESUMEN

Although tissue plasminogen activator (tPA) is known to promote neuronal remodeling in the CNS, no mechanism of how this plastic function takes place has been reported so far. We provide here in vitro and in vivo demonstrations that this serine protease neutralizes inhibitory chondroitin sulfate proteoglycans (CSPGs) by promoting their degradation via the direct activation of endogenous type 4 disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4). Accordingly, in a model of compression-induced spinal cord injury (SCI) in rats, we found that administration of either tPA or its downstream effector ADAMTS-4 restores the tPA-dependent activity lost after the SCI and thereby, reduces content of CSPGs in the spinal cord, a cascade of events leading to an improved axonal regeneration/sprouting and eventually long term functional recovery. This is the first study to reveal a tPA-ADAMTS-4 axis and its function in the CNS. It also raises the prospect of exploiting such cooperation as a therapeutic tool for enhancing recovery after acute CNS injuries.


Asunto(s)
Proteínas ADAM/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Procolágeno N-Endopeptidasa/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Activador de Tejido Plasminógeno/farmacología , Proteína ADAMTS4 , Animales , Axones/efectos de los fármacos , Axones/fisiología , Células Cultivadas , Femenino , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neurocano , Neuropéptidos/farmacología , Inhibidor 1 de Activador Plasminogénico/farmacología , Ratas , Ratas Wistar , Recuperación de la Función , Inhibidores de Serina Proteinasa/farmacología , Serpinas/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Compresión de la Médula Espinal/tratamiento farmacológico , Compresión de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Activador de Tejido Plasminógeno/antagonistas & inhibidores , Neuroserpina
15.
Mol Biol Evol ; 30(5): 1119-30, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23427277

RESUMEN

In humans, the secretin-like G protein-coupled receptor (GPCR) family comprises 15 members with 18 corresponding peptide ligand genes. Although members have been identified in a large variety of vertebrate and nonvertebrate species, the origin and relationship of these proteins remain unresolved. To address this issue, we employed large-scale genome comparisons to identify genome fragments with conserved synteny and matched these fragments to linkage groups in reconstructed early gnathostome ancestral chromosomes (GAC). This genome comparison revealed that most receptor and peptide genes were clustered in three GAC linkage groups and suggested that the ancestral forms of five peptide subfamilies (corticotropin-releasing hormone-like, calcitonin-like, parathyroid hormone-like, glucagon-like, and growth hormone-releasing hormone-like) and their cognate receptor families emerged through tandem local gene duplications before two rounds (2R) of whole-genome duplication. These subfamily genes have, then, been amplified by 2R whole-genome duplication, followed by additional local duplications and gene loss prior to the divergence of land vertebrates and teleosts. This study delineates a possible evolutionary scenario for whole secretin-like peptide and receptor family members and may shed light on evolutionary mechanisms for expansion of a gene family with a large number of paralogs.


Asunto(s)
Duplicación de Gen/genética , Genómica/métodos , Hormonas Peptídicas/genética , Receptores Acoplados a Proteínas G/genética , Secretina/genética , Evolución Molecular , Humanos
16.
Front Neuroendocrinol ; 34(3): 179-89, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23685042

RESUMEN

Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.


Asunto(s)
17-alfa-Hidroxipregnenolona/análogos & derivados , Encéfalo/metabolismo , Locomoción/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Glándula Pineal/metabolismo , 17-alfa-Hidroxipregnenolona/metabolismo , Animales , Encéfalo/fisiología , Corticosterona/fisiología , Femenino , Luz , Masculino , Melatonina/fisiología , Actividad Motora/fisiología , Prolactina/fisiología , Salamandridae
17.
Biochim Biophys Acta ; 1823(4): 940-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22343001

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP), a hypophysiotropic neurohormone, participates in the regulation of pleiotropic functions. The recent discovery of intracellular PACAP receptors in the brain and the testis as well as the physico-chemical characteristics of PACAP, i.e. extended α-helix containing basic residues, prompted us to evaluate the propensity of PACAP to cross the plasma membrane in a receptor-independent manner. Using confocal microscopy and flow cytometry, we demonstrated the ability of FITC-conjugated PACAP to efficiently penetrate into the internal cell compartment by direct translocation and endocytosis through clathrin-coated pits and macropinocytosis. Our study also revealed that, once inside the cells, PACAP38 is not entirely degraded by intracellular enzymes and that a significant amount of intact PACAP38 is also able to exit cells. Moreover, using binding assay on rat nuclear fractions from various tissues, PACAP nuclear receptors were identified. We also found that PACAP stimulates calcium release in rat testis nuclei. Interestingly, PACAP27 and PACAP38 but not VIP were able to upregulate de novo DNA synthesis in testis nuclei and that this effect was abolished by PACAP(6-38). These results support the presence of PAC1 receptors at the nuclear membrane and raise questions about their role in the biological activity of the peptide. These findings contribute to the characterization of PACAP as an intracrine factor and suggest that these intracellular PAC1 binding sites, probably associated with specific biological activities, should be taken into account during the development of PACAP-based drugs.


Asunto(s)
Endocitosis , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/metabolismo , Línea Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular , Citosol/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Masculino , Espectrometría de Masas , Datos de Secuencia Molecular , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/química , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Testículo/citología , Testículo/metabolismo , Transcripción Genética
18.
J Neurochem ; 125(4): 620-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23286644

RESUMEN

Oxidative stress, induced by various neurodegenerative diseases, initiates a cascade of events leading to apoptosis, and thus plays a critical role in neuronal injury. In this study, we have investigated the potential neuroprotective effect of the octadecaneuropeptide (ODN) on 6-hydroxydopamine (6-OHDA)-induced oxidative stress and apoptosis in cerebellar granule neurons (CGN). ODN, which is produced by astrocytes, is an endogenous ligand for both central-type benzodiazepine receptors (CBR) and a metabotropic receptor. Incubation of neurons with subnanomolar concentrations of ODN (10⁻¹8 to 10⁻¹² M) inhibited 6-OHDA-evoked cell death in a concentration-dependent manner. The effect of ODN on neuronal survival was abrogated by the metabotropic receptor antagonist, cyclo1₋8 [DLeu5]OP, but not by a CBR antagonist. ODN stimulated polyphosphoinositide turnover and ERK phosphorylation in CGN. The protective effect of ODN against 6-OHDA toxicity involved the phospholipase C/ERK MAPK transduction cascade. 6-OHDA treatment induced an accumulation of reactive oxygen species, an increase of the expression of the pro-apoptotic gene Bax, a drop of the mitochondrial membrane potential and a stimulation of caspase-3 activity. Exposure of 6-OHDA-treated cells to ODN blocked all the deleterious effects of the toxin. Taken together, these data demonstrate for the first time that ODN is a neuroprotective agent that prevents 6-OHDA-induced oxidative stress and apoptotic cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Cerebelo/efectos de los fármacos , Inhibidor de la Unión a Diazepam/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuropéptidos/farmacología , Oxidopamina/toxicidad , Fragmentos de Péptidos/farmacología , Proteína Quinasa C/metabolismo , Animales , Apoptosis/fisiología , Caspasa 3/metabolismo , Cerebelo/patología , Ciclina D1/genética , Ciclina D1/metabolismo , Glutatión/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/fisiología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Simpaticolíticos/toxicidad
19.
Gen Comp Endocrinol ; 190: 42-6, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23548680

RESUMEN

Several neuropeptides possessing the RFamide motif at their C-termini (designated RFamide peptides) have been characterized in the hypothalamus of a variety of vertebrates. Since the discovery of the 26-amino acid RFamide peptide (termed 26RFa) from the frog brain, 26RFa has been shown to exert orexigenic activity in mammals and to be a ligand of the previously identified orphan G protein-coupled receptor GPR103. Recently, we have identified 26RFa in the avian brain by molecular cloning of the cDNA encoding the 26RFa precursor and mass spectrometry analysis of the mature peptide. 26RFa-producing neurons are exclusively located in the hypothalamus whereas GPR103 is widely distributed in the avian brain. Furthermore, avian 26RFa stimulates feeding behavior in broiler chicks. This review summarizes the advances in the identification, localization, and functions of 26RFa and its cognate receptor GPR103 in vertebrates and highlights recent progress made in birds.


Asunto(s)
Aves/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ingestión de Alimentos/fisiología , Espectrometría de Masas
20.
Biochem J ; 443(2): 387-96, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22250954

RESUMEN

Golgi-associated long coiled-coil proteins, often referred to as golgins, are involved in the maintenance of the structural organization of the Golgi apparatus and the regulation of membrane traffic events occurring in this organelle. Little information is available on the contribution of golgins to Golgi function in cells specialized in secretion such as endocrine cells or neurons. In the present study, we characterize the intracellular distribution as well as the biochemical and functional properties of a novel long coiled-coil protein present in neuroendocrine tissues, NECC1 (neuroendocrine long coiled-coil protein 1). The present study shows that NECC1 is a peripheral membrane protein displaying high stability to detergent extraction, which distributes across the Golgi apparatus in neuroendocrine cells. In addition, NECC1 partially localizes to post-Golgi carriers containing secretory cargo in PC12 cells. Overexpression of NECC1 resulted in the formation of juxtanuclear aggregates together with a slight fragmentation of the Golgi and a decrease in K+-stimulated hormone release. In contrast, NECC1 silencing did not alter Golgi architecture, but enhanced K+-stimulated hormone secretion in PC12 cells. In all, the results of the present study identify NECC1 as a novel component of the Golgi matrix and support a role for this protein as a negative modulator of the regulated trafficking of secretory cargo in neuroendocrine cells.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Transporte Biológico , Silenciador del Gen , Proteínas de Homeodominio/genética , Proteínas de la Membrana/genética , Células Neuroendocrinas/metabolismo , Células PC12 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA