Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 184(10): 2595-2604.e13, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33891875

RESUMEN

The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases associated with this variant have been detected in the United States (US) since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidad , COVID-19/transmisión , Femenino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiología
2.
J Clin Microbiol ; 58(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513858

RESUMEN

Molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the gold standard for diagnosis of coronavirus disease 2019 (COVID-19), but the clinical performance of these tests is still poorly understood, particularly with regard to disease course, patient-specific factors, and viral shedding. From 10 March to 1 May 2020, NewYork-Presbyterian laboratories performed 27,377 SARS-CoV-2 molecular assays from 22,338 patients. Repeat testing was performed for 3,432 patients, of which 2,413 had initial negative and 802 had initial positive results. Repeat-tested patients were more likely to have severe disease and low viral loads. The negative predictive value of the first-day result among repeat-tested patients was 81.3% The clinical sensitivity of SARS-CoV-2 molecular assays was estimated between 58% and 96%, depending on the unknown number of false-negative results in single-tested patients. Conversion to negative was unlikely to occur before 15 to 20 days after initial testing or 20 to 30 days after the onset of symptoms, with 50% conversion occurring at 28 days after initial testing. Conversion from first-day negative to positive results increased linearly with each day of testing, reaching 25% probability in 20 days. Sixty patients fluctuated between positive and negative results over several weeks, suggesting that caution is needed when single-test results are acted upon. In summary, our study provides estimates of the clinical performance of SARS-CoV-2 molecular assays and suggests time frames for appropriate repeat testing, namely, 15 to 20 days after a positive test and the same day or next 2 days after a negative test for patients with high suspicion for COVID-19.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Pruebas Diagnósticas de Rutina/métodos , Neumonía Viral/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus/genética , COVID-19 , Prueba de COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , New York , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , Valor Predictivo de las Pruebas , SARS-CoV-2 , Sensibilidad y Especificidad , Carga Viral , Adulto Joven
3.
J Clin Microbiol ; 58(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32381643

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as the cause of a worldwide pandemic. Many commercial SARS-CoV-2 reverse transcription-PCR (RT-PCR) assays have received Emergency Use Authorization from the U.S. Food and Drug Administration. However, there are limited data describing their performance, in particular the performance of high-throughput SARS-CoV-2 RT-PCR systems. We analyzed the diagnostic performance of two high-throughput systems: cobas 6800 and Panther Fusion, and their associated RT-PCR assays, with a collection of 389 nasopharyngeal specimens. The overall agreement between the platforms was 96.4% (375/389). Cohen's kappa analysis rated the strength of agreement between the two platforms as "almost perfect" (κ = 0.922; standard error, 0.051). Furthermore, there was no significant difference between corresponding cycle threshold values generated on the two systems (P value = 0.88; Student's t test). Taken together, these data imply that the two platforms can be considered comparable in terms of their clinical performance. We believe that this information will be useful for those who have already adopted these platforms or are seeking to implement high-throughput RT-PCR testing to stem the SARS-CoV-2 pandemic.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/diagnóstico , Ensayos Analíticos de Alto Rendimiento , Neumonía Viral/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Nasofaringe/virología , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Estados Unidos
4.
Clin Chem ; 66(11): 1396-1404, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32821907

RESUMEN

BACKGROUND: Accurate diagnostic strategies to identify SARS-CoV-2 positive individuals rapidly for management of patient care and protection of health care personnel are urgently needed. The predominant diagnostic test is viral RNA detection by RT-PCR from nasopharyngeal swabs specimens, however the results are not promptly obtainable in all patient care locations. Routine laboratory testing, in contrast, is readily available with a turn-around time (TAT) usually within 1-2 hours. METHOD: We developed a machine learning model incorporating patient demographic features (age, sex, race) with 27 routine laboratory tests to predict an individual's SARS-CoV-2 infection status. Laboratory testing results obtained within 2 days before the release of SARS-CoV-2 RT-PCR result were used to train a gradient boosting decision tree (GBDT) model from 3,356 SARS-CoV-2 RT-PCR tested patients (1,402 positive and 1,954 negative) evaluated at a metropolitan hospital. RESULTS: The model achieved an area under the receiver operating characteristic curve (AUC) of 0.854 (95% CI: 0.829-0.878). Application of this model to an independent patient dataset from a separate hospital resulted in a comparable AUC (0.838), validating the generalization of its use. Moreover, our model predicted initial SARS-CoV-2 RT-PCR positivity in 66% individuals whose RT-PCR result changed from negative to positive within 2 days. CONCLUSION: This model employing routine laboratory test results offers opportunities for early and rapid identification of high-risk SARS-CoV-2 infected patients before their RT-PCR results are available. It may play an important role in assisting the identification of SARS-CoV-2 infected patients in areas where RT-PCR testing is not accessible due to financial or supply constraints.


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Pruebas Hematológicas , Aprendizaje Automático , Neumonía Viral/diagnóstico , Adulto , Anciano , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Femenino , Humanos , Laboratorios , Masculino , Persona de Mediana Edad , Modelos Teóricos , Pandemias , Curva ROC , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
5.
Mod Pathol ; 31(5): 791-808, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29327716

RESUMEN

In lung adenocarcinoma, canonical EML4-ALK inversion results in a fusion protein with a constitutively active ALK kinase domain. Evidence of ALK rearrangement occurs in a minority (2-7%) of lung adenocarcinoma, and only ~60% of these patients will respond to targeted ALK inhibition by drugs such as crizotinib and ceritinib. Clinically, targeted anti-ALK therapy is often initiated based on evidence of an ALK genomic rearrangement detected by fluorescence in situ hybridization (FISH) of interphase cells in formalin-fixed, paraffin-embedded tissue sections. At the genomic level, however, ALK rearrangements are heterogeneous, with multiple potential breakpoints in EML4, and alternate fusion partners. Using next-generation sequencing of DNA and RNA together with ALK immunohistochemistry, we comprehensively characterized genomic breakpoints in 33 FISH-positive lung adenocarcinomas. Of these 33 cases, 29 (88%) had detectable DNA level ALK rearrangements involving EML4, KIF5B, or non-canonical partners including ASXL2, ATP6V1B1, PRKAR1A, and SPDYA. A subset of 12 cases had material available for RNA-Seq. Of these, eight of eight (100%) cases with DNA rearrangements showed ALK fusion transcripts from RNA-Seq; three of four cases (75%) without detectable DNA rearrangements were similarly negative by RNA-Seq, and one case was positive by RNA-Seq but negative by DNA next-generation sequencing. By immunohistochemistry, 17 of 19 (89%) tested cases were clearly positive for ALK protein expression; the remaining cases had no detectable DNA level rearrangement or had a non-canonical rearrangement not predicted to form a fusion protein. Survival analysis of patients treated with targeted ALK inhibitors demonstrates a significant difference in mean survival between patients with next-generation sequencing confirmed EML4-ALK rearrangements, and those without (20.6 months vs 5.4 months, P<0.01). Together, these data demonstrate abundant genomic heterogeneity among ALK-rearranged lung adenocarcinoma, which may account for differences in treatment response with targeted ALK inhibitors.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Puntos de Rotura del Cromosoma , Neoplasias Pulmonares/genética , Adulto , Anciano , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Crizotinib/uso terapéutico , Femenino , Reordenamiento Génico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Proteínas de Fusión Oncogénica/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Sulfonas/uso terapéutico , Análisis de Supervivencia
6.
Learn Mem ; 22(2): 83-91, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25593294

RESUMEN

Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory.


Asunto(s)
Hipocampo/fisiología , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Lóbulo Temporal/fisiología , Percepción Visual/fisiología , Anciano , Animales , Discriminación en Psicología/fisiología , Femenino , Hipocampo/patología , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Long-Evans , Lóbulo Temporal/patología
8.
Diagn Pathol ; 19(1): 70, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796421

RESUMEN

IDH1 and IDH2 mutational status is a critical biomarker with diagnostic, prognostic, and treatment implications in glioma. Although IDH1 p.R132H-specific immunohistochemistry is available, it is unable to identify other mutations in IDH1/2. Next-generation sequencing can accurately determine IDH1/2 mutational status but suffers from long turnaround time when urgent treatment planning and initiation is medically necessary. The Idylla assay can detect IDH1/2 mutational status from unstained formalin-fixed paraffin-embedded (FFPE) slides in as little as a few hours. In a clinical validation, we demonstrate clinical accuracy of 97% compared to next-generation sequencing. Sensitivity studies demonstrated a limit of detection of 2.5-5% variant allele frequency, even at DNA inputs below the manufacturer's recommended threshold. Overall, the assay is an effective and accurate method for rapid determination of IDH1/2 mutational status.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/enzimología , Análisis Mutacional de ADN/métodos , Adhesión en Parafina , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Formaldehído , Fijación del Tejido/métodos , Reproducibilidad de los Resultados
9.
Proc Natl Acad Sci U S A ; 107(37): 16096-100, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20798341

RESUMEN

Charges are inherently incompatible with hydrophobic environments. Presumably for this reason, ionizable residues are usually excluded from the hydrophobic interior of proteins and are found instead at the surface, where they can interact with bulk water. Paradoxically, ionizable groups buried in the hydrophobic interior of proteins play essential roles, especially in biological energy transduction. To examine the unusual properties of internal ionizable groups we measured the pK(a) of glutamic acid residues at 25 internal positions in a stable form of staphylococcal nuclease. Two of 25 Glu residues titrated with normal pK(a) near 4.5; the other 23 titrated with elevated pK(a) values ranging from 5.2-9.4, with an average value of 7.7. Trp fluorescence and far-UV circular dichroism were used to monitor the effects of internal charges on conformation. These data demonstrate that although charges buried in proteins are indeed destabilizing, charged side chains can be buried readily in the hydrophobic core of stable proteins without the need for specialized structural adaptations to stabilize them, and without inducing any major conformational reorganization. The apparent dielectric effect experienced by the internal charges is considerably higher than the low dielectric constants of hydrophobic matter used to represent the protein interior in electrostatic continuum models of proteins. The high thermodynamic stability required for proteins to withstand the presence of buried charges suggests a pathway for the evolution of enzymes, and it underscores the need to mind thermodynamic stability in any strategy for engineering novel or altered enzymatic active sites in proteins.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Nucleasa Microcócica/química , Staphylococcus/enzimología , Dicroismo Circular , Estabilidad de Enzimas , Modelos Moleculares , Estructura Terciaria de Proteína , Termodinámica
10.
J Mol Diagn ; 25(10): 740-747, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37474002

RESUMEN

An epidemic caused by an outbreak of mpox (formerly monkeypox) in May 2022 rapidly spread internationally, requiring an urgent response from the clinical diagnostics community. A detailed description of the clinical validation and implementation of a laboratory-developed real-time PCR test for detecting nonvariola Orthopoxvirus-specific DNA based on the newly designed RealStar Zoonotic Orthopoxvirus assay is presented. The validation was performed using an accuracy panel (n = 97) comprising skin lesion swabs in universal transport media and from mpox virus genomic DNA spiked into pooled mpox virus-negative remnant universal transport media of lesion specimens submitted for routine clinical testing in the NewYork-Presbyterian Hospital clinical laboratory system. Accuracy testing demonstrated excellent assay agreement between expected and observed results and comparable diagnostic performance to three different reference tests. Analytical sensitivity with 95% detection probability was 126 copies/mL, and analytical specificity, clinical sensitivity, and clinical specificity were 100%. In summary, the RealStar Zoonotic Orthopoxvirus assay provides a sensitive and reliable method for routine diagnosis of mpox infections.


Asunto(s)
Enfermedades Transmisibles , Mpox , Orthopoxvirus , Humanos , Orthopoxvirus/genética , Mpox/diagnóstico , Mpox/epidemiología , Sensibilidad y Especificidad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN Viral/genética
11.
NPJ Precis Oncol ; 7(1): 52, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264091

RESUMEN

The tumor immune composition influences prognosis and treatment sensitivity in lung cancer. The presence of effective adaptive immune responses is associated with increased clinical benefit after immune checkpoint blockers. Conversely, immunotherapy resistance can occur as a consequence of local T-cell exhaustion/dysfunction and upregulation of immunosuppressive signals and regulatory cells. Consequently, merely measuring the amount of tumor-infiltrating lymphocytes (TILs) may not accurately reflect the complexity of tumor-immune interactions and T-cell functional states and may not be valuable as a treatment-specific biomarker. In this work, we investigate an immune-related biomarker (PhenoTIL) and its value in associating with treatment-specific outcomes in non-small cell lung cancer (NSCLC). PhenoTIL is a novel computational pathology approach that uses machine learning to capture spatial interplay and infer functional features of immune cell niches associated with tumor rejection and patient outcomes. PhenoTIL's advantage is the computational characterization of the tumor immune microenvironment extracted from H&E-stained preparations. Association with clinical outcome and major non-small cell lung cancer (NSCLC) histology variants was studied in baseline tumor specimens from 1,774 lung cancer patients treated with immunotherapy and/or chemotherapy, including the clinical trial Checkmate 057 (NCT01673867).

12.
Sci Adv ; 8(22): eabn3966, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35648850

RESUMEN

Immune checkpoint inhibitors (ICIs) show prominent clinical activity across multiple advanced tumors. However, less than half of patients respond even after molecule-based selection. Thus, improved biomarkers are required. In this study, we use an image analysis to capture morphologic attributes relating to the spatial interaction and architecture of tumor cells and tumor-infiltrating lymphocytes (TILs) from digitized H&E images. We evaluate the association of image features with progression-free (PFS) and overall survival in non-small cell lung cancer (NSCLC) (N = 187) and gynecological cancer (N = 39) patients treated with ICIs. We demonstrated that the classifier trained with NSCLC alone was associated with PFS in independent NSCLC cohorts and also in gynecological cancer. The classifier was also associated with clinical outcome independent of clinical factors. Moreover, the classifier was associated with PFS even with low PD-L1 expression. These findings suggest that image analysis can be used to predict clinical end points in patients receiving ICI.

13.
J Mol Diagn ; 24(8): 825-840, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35690309

RESUMEN

In the two decades since Accreditation Council for Graduate Medical Education-accredited Molecular Genetic Pathology fellowships began, the field of clinical molecular pathology has evolved considerably. The American Board of Pathology gathered data from board-certified molecular genetic pathologists assessing the alignment of skills and knowledge gained during fellowship with current needs on the job. The Association of Molecular Pathology conducted a parallel survey of program directors, and included questions on how various topics were taught during fellowship, as well as ranking their importance. Both surveys showed that most training aligned well with the practice needs of former trainees. Genomic profiling of tumors by next-generation sequencing, bioinformatics, laboratory management, and regulatory issues were topics thought to require increased emphasis in training. Topics related to clinical genetics and microbiology were deemed less important by those in practice, perhaps reflecting the increasing subspecialization of molecular pathologists. Program directors still viewed these topics as important to provide foundational knowledge. Parentage, identity, and human leukocyte antigen testing were less important to both survey audiences. These data may be helpful in guiding future adjustments to the Molecular Genetic Pathology curriculum and Accreditation Council for Graduate Medical Education program requirements.


Asunto(s)
Becas , Patólogos , Acreditación , Curriculum , Educación de Postgrado en Medicina , Humanos , Patología Molecular , Estados Unidos
14.
Sci Adv ; 8(47): eabq4609, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36427313

RESUMEN

Tumor vasculature is a key component of the tumor microenvironment that can influence tumor behavior and therapeutic resistance. We present a new imaging biomarker, quantitative vessel tortuosity (QVT), and evaluate its association with response and survival in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitor (ICI) therapies. A total of 507 cases were used to evaluate different aspects of the QVT biomarkers. QVT features were extracted from computed tomography imaging of patients before and after ICI therapy to capture the tortuosity, curvature, density, and branching statistics of the nodule vasculature. Our results showed that QVT features were prognostic of OS (HR = 3.14, 0.95% CI = 1.2 to 9.68, P = 0.0006, C-index = 0.61) and could predict ICI response with AUCs of 0.66, 0.61, and 0.67 on three validation sets. Our study shows that QVT imaging biomarker could potentially aid in predicting and monitoring response to ICI in patients with NSCLC.

15.
Diagn Microbiol Infect Dis ; 104(4): 115789, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36122486

RESUMEN

We evaluated the performance of SARS-CoV-2 TaqMan real-time reverse-transcription PCR (RT-qPCR) assays (ThermoFisher) for detecting 2 nonsynonymous spike protein mutations, E484K and N501Y. Assay accuracy was evaluated by whole genome sequencing (WGS). Residual nasopharyngeal SARS-CoV-2 positive samples (N = 510) from a diverse patient population in New York City submitted for routine SARS-CoV-2 testing during January-April 2020 were used. We detected 91 (18%) N501Y and 101 (20%) E484K variants. Four samples (0.8%) were positive for both variants. The assay had nearly perfect concordance with WGS in the validation subset, detecting B.1.1.7 and B.1.526 variants among others. Sensitivity and specificity ranged from 0.95 to 1.00. Positive and negative predictive values were 0.98-1.00. TaqMan genotyping successfully predicted the presence of B.1.1.7, but had significantly lower sensitivity, 62% (95% CI, 0.53, 0.71), for predicting B.1.526 sub-lineages lacking E484K. This approach is rapid and accurate for detecting SARS-CoV-2 variants and can be rapidly implemented in routine clinical setting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Prueba de COVID-19 , Polimorfismo de Nucleótido Simple , Genotipo , COVID-19/diagnóstico , Mutación
16.
NPJ Precis Oncol ; 6(1): 33, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35661148

RESUMEN

Despite known histological, biological, and clinical differences between lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), relatively little is known about the spatial differences in their corresponding immune contextures. Our study of over 1000 LUAD and LUSC tumors revealed that computationally derived patterns of tumor-infiltrating lymphocytes (TILs) on H&E images were different between LUAD (N = 421) and LUSC (N = 438), with TIL density being prognostic of overall survival in LUAD and spatial arrangement being more prognostically relevant in LUSC. In addition, the LUAD-specific TIL signature was associated with OS in an external validation set of 100 NSCLC treated with more than six different neoadjuvant chemotherapy regimens, and predictive of response to therapy in the clinical trial CA209-057 (n = 303). In LUAD, the prognostic TIL signature was primarily comprised of CD4+ T and CD8+ T cells, whereas in LUSC, the immune patterns were comprised of CD4+ T, CD8+ T, and CD20+ B cells. In both subtypes, prognostic TIL features were associated with transcriptomics-derived immune scores and biological pathways implicated in immune recognition, response, and evasion. Our results suggest the need for histologic subtype-specific TIL-based models for stratifying survival risk and predicting response to therapy. Our findings suggest that predictive models for response to therapy will need to account for the unique morphologic and molecular immune patterns as a function of histologic subtype of NSCLC.

17.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35233546

RESUMEN

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Asunto(s)
COVID-19/genética , COVID-19/patología , Pulmón/patología , SARS-CoV-2 , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/metabolismo , COVID-19/virología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica , Humanos , Gripe Humana/genética , Gripe Humana/patología , Gripe Humana/virología , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Orthomyxoviridae , RNA-Seq/métodos , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/microbiología , Síndrome de Dificultad Respiratoria/patología , Carga Viral
18.
J Mol Diagn ; 23(2): 149-158, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33285285

RESUMEN

An epidemic caused by an outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China in December 2019 has since rapidly spread internationally, requiring urgent response from the clinical diagnostics community. We present a detailed overview of the clinical validation and implementation of the first laboratory-developed real-time RT-PCR test offered in the NewYork-Presbyterian Hospital system following the Emergency Use Authorization issued by the US Food and Drug Administration. Nasopharyngeal and sputum specimens (n = 174) were validated using newly designed dual-target real-time RT-PCR (altona RealStar SARS-CoV-2 Reagent) for detecting SARS-CoV-2 in upper respiratory tract and lower respiratory tract specimens. Accuracy testing demonstrated excellent assay agreement between expected and observed values and comparable diagnostic performance to reference tests. The limit of detection was 2.7 and 23.0 gene copies per reaction for nasopharyngeal and sputum specimens, respectively. Retrospective analysis of 1694 upper respiratory tract specimens from 1571 patients revealed increased positivity in older patients and males compared with females, and an increasing positivity rate from approximately 20% at the start of testing to 50% at the end of testing 3 weeks later. Herein, we demonstrate that the assay accurately and sensitively identifies SARS-CoV-2 in multiple specimen types in the clinical setting and summarize clinical data from early in the epidemic in New York City.


Asunto(s)
Academias e Institutos , Prueba de COVID-19 , COVID-19/diagnóstico , COVID-19/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bioensayo , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Límite de Detección , Masculino , Persona de Mediana Edad , Nasofaringe/virología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Esputo/virología , Adulto Joven
19.
Front Med (Lausanne) ; 8: 662312, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195208

RESUMEN

Cell-free DNA (cfDNA) extracted from diverse specimen types has emerged as a high quality substrate for molecular tumor profiling. Analytical and pre-analytical challenges in the utilization of cfDNA extracted from pleural effusion supernatant (PES) are herein characterized in patients with metastatic non-small cell lung carcinoma (NSCLC). Pleural effusion specimens containing metastatic NSCLC were collected prospectively. After ThinPrep® (TP) and cell block (CB) preparation, DNA was extracted from residual PES and analyzed by gel electrophoresis for quality and quantity. Libraries were prepared and sequenced with a targeted next-generation sequencing (NGS) platform and panel clinically validated for plasma specimens. Results were compared with DNA extracted from corresponding FFPE samples that were sequenced using institutional targeted NGS assays clinically validated for solid tumor FFPE samples. Tumor (TC) and overall cellularity (OC) were evaluated. Fourteen specimens were collected from 13 patients. Median specimen volume was 180 mL (range, 35-1,400 mL). Median TC and OC on TP slides and CB sections were comparable. Median extracted DNA concentration was 7.4 ng/µL (range, 0.1-58.0 ng/µL), with >5 ng/µL DNA extracted from 10/14 specimens (71%). Mutations were identified in 10/14 specimens, including 1/3 specimens with median molecular coverage <1,000 reads. The minimal detected allelic fraction was 0.6%. NGS was falsely negative for the presence of one driver mutation. No correlation was identified between sample volume or OC, quality or quantity of extracted DNA, or mutation detection. Despite analytical and pre-analytical challenges, PES represents a robust source of DNA for NGS.

20.
Cancer Genet ; 256-257: 68-76, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33915454

RESUMEN

Acute myeloid leukemia (AML) is typically characterized clinically for prognostic purposes using both cytogenetic and molecular characteristics. However, both cytogenetic and molecular risk stratification schemas are varied and few reports have studied correlations between these schemas. We have performed a single institution retrospective review of cytogenetic and molecular classifications of AMLs seen at Penn Medicine between 2013 and 2018. One-hundred fourty-four cases were characterized according to European Leukemia Net (ELN) or Medical Research Council (MRC) criteria for cytogenetics and results compared to molecular profiling. When we analyzed the most common sequencing study results within the risk groupings, negative sequencing studies and FLT3 mutations were common in favorable AMLs, intermediate AMLs had mutations in FLT3, NPM1, DNMT3A and IDH2, while adverse AMLs had a high prevalence of TP53 mutations. We next grouped the genes on the panel by their proteins' functions and found mutations in signaling pathway genes to be common in favorable AMLs while tumor suppressors were commonly mutated in adverse AMLs. AMLs grouped by the type of chromosomal abnormality present showed that FLT3 mutations were common in AMLs with a trisomy while TP53 mutations were common in AMLs with a monosomy or a deletion. TP53 mutations are especially common in AMLs with a monosomal karyotype and often overlap with 17p loss. Interestingly, although all AMLs with TP53 mutations have a defect in the response to DNA damage, expression of P53 protein before and after irradiation is not consistently predicted by phenotype. Overall, these studies confirm the genetic complexity of AML which does not fall into simple patterns of cooperating mutations.


Asunto(s)
Análisis Citogenético , Perfilación de la Expresión Génica , Leucemia Mieloide Aguda/genética , Línea Celular Tumoral , Aberraciones Cromosómicas , Estudios de Cohortes , Rayos gamma , Humanos , Mutación/genética , Nucleofosmina , Medición de Riesgo , Factores de Riesgo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA