Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Reprod ; 33(4): 745-756, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29471395

RESUMEN

STUDY QUESTION: What is the origin and composition of cell-free DNA in human embryo spent culture media? SUMMARY ANSWER: Cell-free DNA from human embryo spent culture media represents a mix of maternal and embryonic DNA, and the mixture can be more complex for mosaic embryos. WHAT IS KNOWN ALREADY: In 2016, ~300 000 human embryos were chromosomally and/or genetically analyzed using preimplantation genetic testing for aneuploidies (PGT-A) or monogenic disorders (PGT-M) before transfer into the uterus. While progress in genetic techniques has enabled analysis of the full karyotype in a single cell with high sensitivity and specificity, these approaches still require an embryo biopsy. Thus, non-invasive techniques are sought as an alternative. STUDY DESIGN, SIZE, DURATION: This study was based on a total of 113 human embryos undergoing trophectoderm biopsy as part of PGT-A analysis. For each embryo, the spent culture media used between Day 3 and Day 5 of development were collected for cell-free DNA analysis. In addition to the 113 spent culture media samples, 28 media drops without embryo contact were cultured in parallel under the same conditions to use as controls. In total, 141 media samples were collected and divided into two groups: one for direct DNA quantification (53 spent culture media and 17 controls), the other for whole-genome amplification (60 spent culture media and 11 controls) and subsequent quantification. Some samples with amplified DNA (N = 56) were used for aneuploidy testing by next-generation sequencing; of those, 35 samples underwent single-nucleotide polymorphism (SNP) sequencing to detect maternal contamination. Finally, from the 35 spent culture media analyzed by SNP sequencing, 12 whole blastocysts were analyzed by fluorescence in situ hybridization (FISH) to determine the level of mosaicism in each embryo, as a possible origin for discordance between sample types. PARTICIPANTS/MATERIALS, SETTING, METHODS: Trophectoderm biopsies and culture media samples (20 µl) underwent whole-genome amplification, then libraries were generated and sequenced for an aneuploidy study. For SNP sequencing, triads including trophectoderm DNA, cell-free DNA, and follicular fluid DNA were analyzed. In total, 124 SNPs were included with 90 SNPs distributed among all autosomes and 34 SNPs located on chromosome Y. Finally, 12 whole blastocysts were fixed and individual cells were analyzed by FISH using telomeric/centromeric probes for the affected chromosomes. MAIN RESULTS AND THE ROLE OF CHANCE: We found a higher quantity of cell-free DNA in spent culture media co-cultured with embryos versus control media samples (P ≤ 0.001). The presence of cell-free DNA in the spent culture media enabled a chromosomal diagnosis, although results differed from those of trophectoderm biopsy analysis in most cases (67%). Discordant results were mainly attributable to a high percentage of maternal DNA in the spent culture media, with a median percentage of embryonic DNA estimated at 8%. Finally, from the discordant cases, 91.7% of whole blastocysts analyzed by FISH were mosaic and 75% of the analyzed chromosomes were concordant with the trophectoderm DNA diagnosis instead of the cell-free DNA result. LIMITATIONS, REASONS FOR CAUTION: This study was limited by the sample size and the number of cells analyzed by FISH. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study to combine chromosomal analysis of cell-free DNA, SNP sequencing to identify maternal contamination, and whole-blastocyst analysis for detecting mosaicism. Our results provide a better understanding of the origin of cell-free DNA in spent culture media, offering an important step toward developing future non-invasive karyotyping that must rely on the specific identification of DNA released from human embryos. STUDY FUNDING/ COMPETING INTEREST: This work was funded by Igenomix S.L. There are no competing interests.


Asunto(s)
Ácidos Nucleicos Libres de Células/análisis , Medios de Cultivo/química , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/fisiología , Femenino , Humanos , Embarazo
2.
Hum Reprod ; 31(4): 844-53, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26874359

RESUMEN

STUDY QUESTION: How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER: By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY: Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described. STUDY DESIGN, SIZE, DURATION: The frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells. PARTICIPANTS/MATERIALS, SETTING, METHODS: For method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: Here we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603 commonly expressed genes were detected, with 241 significantly differentially expressed genes. Of these, 231 genes were up- and 10 down-regulated in cultured cells, respectively. In addition, we performed a gene ontology analysis of the differentially expressed genes and found that these genes are mainly related to cell cycle, translational processes and metabolism. LIMITATIONS, REASONS FOR CAUTION: Although CD9-positive single epithelial cells sorting was successfully established in our laboratory, the amount of transcriptome data per individual epithelial cell was low, complicating further analysis. This step most likely failed due to the high dose of RNases that are released by the cells' natural processes, or due to rapid turnaround time or the apoptotic conditions in freezing- or single-cell solutions. Since only the cells from the late-secretory phase were subject to more focused analysis, further studies including larger sample size from the different time-points of the natural menstrual cycle are needed. The methodology also needs further optimization to examine different cell types at high quality. WIDER IMPLICATIONS OF THE FINDINGS: The symbiosis between clinical biopsy and the sophisticated laboratory and bioinformatic protocols described here brings together clinical diagnostic needs and modern laboratory and bioinformatic solutions, enabling us to implement a precise analytical toolbox for studying the endometrial tissue even at the single-cell level.


Asunto(s)
Endometrio/metabolismo , Regulación de la Expresión Génica , ARN Mensajero/metabolismo , Transcriptoma , Adulto , Biomarcadores/metabolismo , Antígenos CD13/metabolismo , Separación Celular , Células Cultivadas , Criopreservación , Endometrio/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Estonia , Femenino , Perfilación de la Expresión Génica , Biblioteca de Genes , Ontología de Genes , Humanos , Fase Luteínica , ARN Mensajero/química , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma/citología , Células del Estroma/metabolismo , Tetraspanina 29/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA