Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(4): 933-45, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957691

RESUMEN

In Rspondin-based 3D cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. We report the establishment of tumor organoid cultures from 20 consecutive colorectal carcinoma (CRC) patients. For most, organoids were also generated from adjacent normal tissue. Organoids closely recapitulate several properties of the original tumor. The spectrum of genetic changes within the "living biobank" agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43, rather than in APC. Organoid technology may fill the gap between cancer genetics and patient trials, complement cell-line- and xenograft-based drug studies, and allow personalized therapy design. PAPERCLIP.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Organoides , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Oncogénicas/metabolismo , Técnicas de Cultivo de Órganos , Organoides/efectos de los fármacos , Medicina de Precisión , Ubiquitina-Proteína Ligasas
2.
Cell ; 155(3): 567-81, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24139898

RESUMEN

Mutation is a fundamental process in tumorigenesis. However, the degree to which the rate of somatic mutation varies across the human genome and the mechanistic basis underlying this variation remain to be fully elucidated. Here, we performed a cross-cancer comparison of 402 whole genomes comprising a diverse set of childhood and adult tumors, including both solid and hematopoietic malignancies. Surprisingly, we found that the inactive X chromosome of many female cancer genomes accumulates on average twice and up to four times as many somatic mutations per megabase, as compared to the individual autosomes. Whole-genome sequencing of clonally expanded hematopoietic stem/progenitor cells (HSPCs) from healthy individuals and a premalignant myelodysplastic syndrome (MDS) sample revealed no X chromosome hypermutation. Our data suggest that hypermutation of the inactive X chromosome is an early and frequent feature of tumorigenesis resulting from DNA replication stress in aberrantly proliferating cells.


Asunto(s)
Cromosomas Humanos X , Mutación , Neoplasias/genética , Inactivación del Cromosoma X , Adulto , Anciano , Replicación del ADN , Femenino , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Polimorfismo de Nucleótido Simple , Fase S
3.
Cell ; 148(1-2): 59-71, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265402

RESUMEN

Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome), uncovering massive, complex chromosome rearrangements. Integrating TP53 status with microarray and deep sequencing-based DNA rearrangement data in additional patients reveals a striking association between TP53 mutation and chromothripsis in SHH-MBs. Analysis of additional tumor entities substantiates a link between TP53 mutation and chromothripsis, and indicates a context-specific role for p53 in catastrophic DNA rearrangements. Among these, we observed a strong association between somatic TP53 mutations and chromothripsis in acute myeloid leukemia. These findings connect p53 status and chromothripsis in specific tumor types, providing a genetic basis for understanding particularly aggressive subtypes of cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Reordenamiento Génico , Meduloblastoma/genética , Proteína p53 Supresora de Tumor/genética , Animales , Niño , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Humanos , Leucemia Mieloide Aguda/genética , Síndrome de Li-Fraumeni/fisiopatología , Ratones , Persona de Mediana Edad
4.
Cell ; 142(2): 218-29, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655465

RESUMEN

Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid-induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1-deficient neuroblastomas.


Asunto(s)
Neuroblastoma/diagnóstico , Neurofibromina 1/metabolismo , Tretinoina/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Humanos , Neuroblastoma/metabolismo , Neurofibromina 1/genética , Pronóstico , Proteínas , Transducción de Señal , Activación Transcripcional
5.
Nature ; 567(7749): 545-549, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30894746

RESUMEN

MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Estabilidad Proteica , Tioléster Hidrolasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34479993

RESUMEN

Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.


Asunto(s)
Reparación del ADN/genética , Guanosina/análogos & derivados , Neuroblastoma/genética , Adenina/metabolismo , Niño , Citosina/metabolismo , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Femenino , Guanina/metabolismo , Guanosina/genética , Guanosina/metabolismo , Humanos , Masculino , Mutagénesis , Recurrencia Local de Neoplasia/genética , Neuroblastoma/metabolismo , Estrés Oxidativo , Polimorfismo de Nucleótido Simple/genética
7.
Nature ; 510(7506): 537-41, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24847876

RESUMEN

Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.


Asunto(s)
Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Meduloblastoma/genética , Análisis de Secuencia de ADN/métodos , Animales , Sitios de Unión , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Femenino , Genoma/genética , Histonas/metabolismo , Humanos , Meduloblastoma/patología , Ratones , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Nature ; 483(7391): 589-93, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22367537

RESUMEN

Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.


Asunto(s)
Cromosomas Humanos/genética , Neuritas/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Envejecimiento/genética , Análisis por Conglomerados , ADN Helicasas/genética , Análisis Mutacional de ADN , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Conos de Crecimiento/metabolismo , Conos de Crecimiento/patología , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Mutación , Estadificación de Neoplasias , Neuroblastoma/diagnóstico , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Pronóstico , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteína Nuclear Ligada al Cromosoma X , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rho/metabolismo
9.
EMBO J ; 31(14): 3079-91, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22692129

RESUMEN

Two types of stem cells are currently defined in small intestinal crypts: cycling crypt base columnar (CBC) cells and quiescent '+4' cells. Here, we combine transcriptomics with proteomics to define a definitive molecular signature for Lgr5(+) CBC cells. Transcriptional profiling of FACS-sorted Lgr5(+) stem cells and their daughters using two microarray platforms revealed an mRNA stem cell signature of 384 unique genes. Quantitative mass spectrometry on the same cell populations identified 278 proteins enriched in intestinal stem cells. The mRNA and protein data sets showed a high level of correlation and a combined signature of 510 stem cell-enriched genes was defined. Spatial expression patterns were further characterized by mRNA in-situ hybridization, revealing that approximately half of the genes were expressed in a gradient with highest levels at the crypt bottom, while the other half was expressed uniquely in Lgr5(+)stem cells. Lineage tracing using a newly established knock-in mouse for one of the signature genes, Smoc2, confirmed its stem cell specificity. Using this resource, we find-and confirm by independent approaches-that the proposed quiescent/'+4' stem cell markers Bmi1, Tert, Hopx and Lrig1 are robustly expressed in CBC cells.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Animales , Antígenos de Diferenciación/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Perfilación de la Expresión Génica , Intestinos/citología , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores Acoplados a Proteínas G/genética , Células Madre/citología
10.
Nucleic Acids Res ; 42(3): e17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24357407

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at a post-transcriptional level. An miRNA may target many messenger RNA (mRNA) transcripts, and each transcript may be targeted by multiple miRNAs. Our understanding of miRNA regulation is evolving to consider modules of miRNAs that regulate groups of functionally related mRNAs. Here we expand the model of miRNA functional modules and use it to guide the integration of miRNA and mRNA expression and target prediction data. We present evidence of cooperativity between miRNA classes within this integrated miRNA-mRNA association matrix. We then apply bicluster analysis to uncover miRNA functional modules within this integrated data set and develop a novel application to visualize and query these results. We show that this wholly unsupervised approach can discover a network of miRNA-mRNA modules that are enriched for both biological processes and miRNA classes. We apply this method to investigate the interplay of miRNAs and mRNAs in integrated data sets derived from neuroblastoma and human immune cells. This study is the first to apply the technique of biclustering to model functional modules within an integrated miRNA-mRNA association matrix. Results provide evidence of an extensive modular miRNA functional network and enable characterization of miRNA function and dysregulation in disease.


Asunto(s)
MicroARNs/metabolismo , Modelos Genéticos , ARN Mensajero/metabolismo , Análisis por Conglomerados , Gráficos por Computador , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Sistema Inmunológico/metabolismo , MicroARNs/clasificación , Neuroblastoma/genética , Neuroblastoma/metabolismo , Programas Informáticos
11.
Int J Cancer ; 137(4): 868-77, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652004

RESUMEN

Several gene expression-based prognostic signatures have been described in neuroblastoma, but none have successfully been applied in the clinic. Here we have developed a clinically applicable prognostic gene signature, both with regards to number of genes and analysis platform. Importantly, it does not require comparison between patients and is applicable amongst high-risk patients. The signature is based on a two-gene score (R-score) with prognostic power in high-stage tumours (stage 4 and/or MYCN-amplified diagnosed after 18 months of age). QPCR-based and array-based analyses of matched cDNAs confirmed cross platform (array-qPCR) transferability. We also defined a fixed cut-off value identifying prognostically differing subsets of high-risk patients on an individual patient basis. This gene expression signature independently contributes to the current neuroblastoma classification system, and if prospectively validated could provide further stratification of high-risk patients, and potential upfront identification of a group of patients that are in need of new/additional treatment regimens.


Asunto(s)
Detección Precoz del Cáncer , Proteínas de Neoplasias/biosíntesis , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Transcriptoma/genética , Biomarcadores de Tumor , Preescolar , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Estimación de Kaplan-Meier , Proteína Proto-Oncogénica N-Myc , Estadificación de Neoplasias , Neuroblastoma/patología , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Pronóstico
12.
Eur J Nucl Med Mol Imaging ; 42(2): 222-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25267348

RESUMEN

PURPOSE: The aim of this study was to find clinically relevant MIBG-avid metastatic patterns in patients with newly diagnosed stage 4 neuroblastoma. METHODS: Diagnostic (123)I-MIBG scans from 249 patients (123 from a European and 126 from the COG cohort) were assessed for metastatic spread in 14 body segments and the form of the lesions: "focal" (clear margins distinguishable from adjacent background) or "diffuse" (indistinct margins, dispersed throughout the body segment). The total numbers of diffuse and focal lesions were recorded. Patients were then categorized as having lesions exclusively focal, lesions more focal than diffuse, lesions more diffuse than focal, or lesions exclusively diffuse. RESULTS: Diffuse lesions affected a median of seven body segments and focal lesions a median of two body segments (P < 0.001, both cohorts). Patients with a focal pattern had a median of 2 affected body segments and those with a diffuse pattern a median of 11 affected body segments (P < 0.001, both cohorts). Thus, two MIBG-avid metastatic patterns emerged: "limited-focal" and "extensive-diffuse". The median numbers of affected body segments in MYCN-amplified (MNA) tumours were 5 (European cohort) and 4 (COG cohort) compared to 9 and 11, respectively, in single-copy MYCN (MYCNsc) tumours (P < 0.001). Patients with exclusively focal metastases were more likely to have a MNA tumour (60% and 70%, respectively) than patients with the other types of metastases (23% and 28%, respectively; P < 0.001). In a multivariate Cox regression analysis, focal metastases were associated with a better event-free and overall survival than the other types of metastases in patients with MNA tumours in the COG cohort (P < 0.01). CONCLUSION: Two metastatic patterns were found: a "limited and focal" pattern found mainly in patients with MNA neuroblastoma that correlated with prognosis, and an "extensive and diffuse" pattern found mainly in patients with MYCNsc neuroblastoma.


Asunto(s)
3-Yodobencilguanidina , Neuroblastoma/diagnóstico por imagen , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Radiofármacos , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Imagen Multimodal , Proteína Proto-Oncogénica N-Myc , Metástasis de la Neoplasia/diagnóstico por imagen , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neuroblastoma/genética , Neuroblastoma/patología , Tomografía de Emisión de Positrones , Valor Predictivo de las Pruebas , Pronóstico , Tomografía Computarizada por Rayos X
14.
Proc Natl Acad Sci U S A ; 109(47): 19190-5, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23091029

RESUMEN

Neuroblastoma is a pediatric tumor of the sympathetic nervous system. MYCN (V-myc myelocytomatosis viral-related oncogene, neuroblastoma derived [avian]) is amplified in 20% of neuroblastomas, and these tumors carry a poor prognosis. However, tumors without MYCN amplification also may have a poor outcome. Here, we identified downstream targets of MYCN by shRNA-mediated silencing MYCN in neuroblastoma cells. From these targets, 157 genes showed an expression profile correlating with MYCN mRNA levels in NB88, a series of 88 neuroblastoma tumors, and therefore represent in vivo relevant MYCN pathway genes. This 157-gene signature identified very poor prognosis tumors in NB88 and independent neuroblastoma cohorts and was more powerful than MYCN amplification or MYCN expression alone. Remarkably, this signature also identified poor outcome of a group of tumors without MYCN amplification. Most of these tumors have low MYCN mRNA levels but high nuclear MYCN protein levels, suggesting stabilization of MYCN at the protein level. One tumor has an MYC amplification and high MYC expression. Chip-on-chip analyses showed that most genes in this signature are directly regulated by MYCN. MYCN induces genes functioning in cell cycle and DNA repair while repressing neuronal differentiation genes. The functional MYCN-157 signature recognizes classical neuroblastoma with MYCN amplification, as well as a newly identified group marked by MYCN protein stabilization.


Asunto(s)
Amplificación de Genes/genética , Perfilación de la Expresión Génica , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Diferenciación Celular/genética , Análisis por Conglomerados , Reparación del ADN/genética , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias/genética , Humanos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/patología , Neuronas/patología , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Pronóstico , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Resultado del Tratamiento , Regulación hacia Arriba/genética
15.
BMC Bioinformatics ; 15 Suppl 5: S4, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25078098

RESUMEN

BACKGROUND: Cancer patient's outcome is written, in part, in the gene expression profile of the tumor. We previously identified a 62-probe sets signature (NB-hypo) to identify tissue hypoxia in neuroblastoma tumors and showed that NB-hypo stratified neuroblastoma patients in good and poor outcome 1. It was important to develop a prognostic classifier to cluster patients into risk groups benefiting of defined therapeutic approaches. Novel classification and data discretization approaches can be instrumental for the generation of accurate predictors and robust tools for clinical decision support. We explored the application to gene expression data of Rulex, a novel software suite including the Attribute Driven Incremental Discretization technique for transforming continuous variables into simplified discrete ones and the Logic Learning Machine model for intelligible rule generation. RESULTS: We applied Rulex components to the problem of predicting the outcome of neuroblastoma patients on the bases of 62 probe sets NB-hypo gene expression signature. The resulting classifier consisted in 9 rules utilizing mainly two conditions of the relative expression of 11 probe sets. These rules were very effective predictors, as shown in an independent validation set, demonstrating the validity of the LLM algorithm applied to microarray data and patients' classification. The LLM performed as efficiently as Prediction Analysis of Microarray and Support Vector Machine, and outperformed other learning algorithms such as C4.5. Rulex carried out a feature selection by selecting a new signature (NB-hypo-II) of 11 probe sets that turned out to be the most relevant in predicting outcome among the 62 of the NB-hypo signature. Rules are easily interpretable as they involve only few conditions. CONCLUSIONS: Our findings provided evidence that the application of Rulex to the expression values of NB-hypo signature created a set of accurate, high quality, consistent and interpretable rules for the prediction of neuroblastoma patients' outcome. We identified the Rulex weighted classification as a flexible tool that can support clinical decisions. For these reasons, we consider Rulex to be a useful tool for cancer classification from microarray gene expression data.


Asunto(s)
Inteligencia Artificial , Biología Computacional/instrumentación , Perfilación de la Expresión Génica/instrumentación , Neuroblastoma/genética , Algoritmos , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Humanos , Lactante , Lógica , Neuroblastoma/diagnóstico , Pronóstico , Programas Informáticos , Máquina de Vectores de Soporte
16.
Invest New Drugs ; 32(6): 1167-80, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25193492

RESUMEN

BACKGROUND: Polo-like kinase 1 (PLK1) has emerged as a prognostic factor in various neoplasms, but only scarce data have been reported for high-grade osteosarcoma (OS). In this study, we assessed PLK1 expression and the efficacy of PLK1 inhibitor NMS-P937 in OS. METHODS: PLK1 expression was assessed on 21 OS clinical samples and on a panel of human OS cell lines. In vitro efficacy of NMS-P937 was evaluated on nine drug-sensitive and six drug-resistant human OS cell lines, either as single agent or in combination with the drugs used in chemotherapy for OS. RESULTS: PLK1 expression was higher in OS clinical samples and cell lines compared to normal human tissue. A higher PLK1 expression at diagnosis appeared to be associated with an unfavourable clinical outcome. PLK1 silencing produced growth inhibition, cell cycle retardation and apoptosis induction in human OS cell lines. NMS-P937 proved to be highly active in both drug-sensitive and drug-resistant cell lines, with the only exception of ABCB1-overexpressing, Doxorubicin (DX)-resistant variants. However, in these cells, the association of NMS-P937 with DX was able to revert DX-resistance by negatively interfering with ABCB1 transport activity. NMS-P937 was also able to decrease clonogenic and migration ability of human OS cell lines. CONCLUSION: PLK1 can be proposed as a new candidate target for OS. Targeting PLK1 in OS with NMS-P937 in association with conventional chemotherapeutic drugs may be a new interesting therapeutic option, since this approach has proved to be active against drug resistant cells.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Osteosarcoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirazoles/farmacología , Quinazolinas/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Apoptosis/efectos de los fármacos , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Interacciones Farmacológicas , Resistencia a Antineoplásicos/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Osteosarcoma/genética , Osteosarcoma/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Quinasa Tipo Polo 1
17.
Pediatr Blood Cancer ; 61(10): 1867-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24391119

RESUMEN

While a polymorphism located within the promoter region of the MDM2 proto-oncogene, SNP309 (T > G), has previously been associated with increased risk and aggressiveness of neuroblastoma and other tumor entities, a protective effect has also been reported in certain other cancers. In this study, we evaluated the association of MDM2 SNP309 with outcome in 496 patients with neuroblastoma and its effect on MDM2 expression. No significant difference in overall or event-free survival was observed among patients with neuroblastoma with or without MDM2 SNP309. The presence of SNP309 does not affect MDM2 expression in neuroblastoma.


Asunto(s)
Neuroblastoma/genética , Neuroblastoma/mortalidad , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-mdm2/genética , Supervivencia sin Enfermedad , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Estimación de Kaplan-Meier , Pronóstico , Regiones Promotoras Genéticas/genética , Proto-Oncogenes Mas
18.
BMC Bioinformatics ; 14 Suppl 7: S12, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23815266

RESUMEN

BACKGROUND: Neuroblastoma is the most common pediatric solid tumor. About fifty percent of high risk patients die despite treatment making the exploration of new and more effective strategies for improving stratification mandatory. Hypoxia is a condition of low oxygen tension occurring in poorly vascularized areas of the tumor associated with poor prognosis. We had previously defined a robust gene expression signature measuring the hypoxic component of neuroblastoma tumors (NB-hypo) which is a molecular risk factor. We wanted to develop a prognostic classifier of neuroblastoma patients' outcome blending existing knowledge on clinical and molecular risk factors with the prognostic NB-hypo signature. Furthermore, we were interested in classifiers outputting explicit rules that could be easily translated into the clinical setting. RESULTS: Shadow Clustering (SC) technique, which leads to final models called Logic Learning Machine (LLM), exhibits a good accuracy and promises to fulfill the aims of the work. We utilized this algorithm to classify NB-patients on the bases of the following risk factors: Age at diagnosis, INSS stage, MYCN amplification and NB-hypo. The algorithm generated explicit classification rules in good agreement with existing clinical knowledge. Through an iterative procedure we identified and removed from the dataset those examples which caused instability in the rules. This workflow generated a stable classifier very accurate in predicting good and poor outcome patients. The good performance of the classifier was validated in an independent dataset. NB-hypo was an important component of the rules with a strength similar to that of tumor staging. CONCLUSIONS: The novelty of our work is to identify stability, explicit rules and blending of molecular and clinical risk factors as the key features to generate classification rules for NB patients to be conveyed to the clinic and to be used to design new therapies. We derived, through LLM, a set of four stable rules identifying a new class of poor outcome patients that could benefit from new therapies potentially targeting tumor hypoxia or its consequences.


Asunto(s)
Algoritmos , Inteligencia Artificial , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Niño , Humanos , Lógica , Persona de Mediana Edad , Estadificación de Neoplasias , Neuroblastoma/patología , Pronóstico , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Riesgo
19.
Mol Cancer ; 12(1): 70, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23835063

RESUMEN

BACKGROUND: Neuroblastoma (NB) tumours are commonly divided into three cytogenetic subgroups. However, by unsupervised principal components analysis of gene expression profiles we recently identified four distinct subgroups, r1-r4. In the current study we characterized these different subgroups in more detail, with a specific focus on the fourth divergent tumour subgroup (r4). METHODS: Expression microarray data from four international studies corresponding to 148 neuroblastic tumour cases were subject to division into four expression subgroups using a previously described 6-gene signature. Differentially expressed genes between groups were identified using Significance Analysis of Microarray (SAM). Next, gene expression network modelling was performed to map signalling pathways and cellular processes representing each subgroup. Findings were validated at the protein level by immunohistochemistry and immunoblot analyses. RESULTS: We identified several significantly up-regulated genes in the r4 subgroup of which the tyrosine kinase receptor ERBB3 was most prominent (fold change: 132-240). By gene set enrichment analysis (GSEA) the constructed gene network of ERBB3 (n = 38 network partners) was significantly enriched in the r4 subgroup in all four independent data sets. ERBB3 was also positively correlated to the ErbB family members EGFR and ERBB2 in all data sets, and a concurrent overexpression was seen in the r4 subgroup. Further studies of histopathology categories using a fifth data set of 110 neuroblastic tumours, showed a striking similarity between the expression profile of r4 to ganglioneuroblastoma (GNB) and ganglioneuroma (GN) tumours. In contrast, the NB histopathological subtype was dominated by mitotic regulating genes, characterizing unfavourable NB subgroups in particular. The high ErbB3 expression in GN tumour types was verified at the protein level, and showed mainly expression in the mature ganglion cells. CONCLUSIONS: Conclusively, this study demonstrates the importance of performing unsupervised clustering and subtype discovery of data sets prior to analyses to avoid a mixture of tumour subtypes, which may otherwise give distorted results and lead to incorrect conclusions. The current study identifies ERBB3 as a clear-cut marker of a GNB/GN-like expression profile, and we suggest a 7-gene expression signature (including ERBB3) as a complement to histopathology analysis of neuroblastic tumours. Further studies of ErbB3 and other ErbB family members and their role in neuroblastic differentiation and pathogenesis are warranted.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Ganglioneuroblastoma/metabolismo , Ganglioneuroma/metabolismo , Neoplasias del Sistema Nervioso Periférico/metabolismo , Receptor ErbB-3/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptor ErbB-3/genética , Transcriptoma , Regulación hacia Arriba
20.
Acta Neuropathol ; 125(3): 385-94, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23179372

RESUMEN

Recent studies showed frequent mutations in histone H3 lysine 27 (H3K27) demethylases in medulloblastomas of Group 3 and Group 4, suggesting a role for H3K27 methylation in these tumors. Indeed, trimethylated H3K27 (H3K27me3) levels were shown to be higher in Group 3 and 4 tumors compared to WNT and SHH medulloblastomas, also in tumors without detectable mutations in demethylases. Here, we report that polycomb genes, required for H3K27 methylation, are consistently upregulated in Group 3 and 4 tumors. These tumors show high expression of the homeobox transcription factor OTX2. Silencing of OTX2 in D425 medulloblastoma cells resulted in downregulation of polycomb genes such as EZH2, EED, SUZ12 and RBBP4 and upregulation of H3K27 demethylases KDM6A, KDM6B, JARID2 and KDM7A. This was accompanied by decreased H3K27me3 and increased H3K27me1 levels in promoter regions. Strikingly, the decrease of H3K27me3 was most prominent in promoters that bind OTX2. OTX2-bound promoters showed high levels of the H3K4me3 and H3K9ac activation marks and intermediate levels of the H3K27me3 inactivation mark, reminiscent of a bivalent modification. After silencing of OTX2, H3K27me3 levels strongly dropped, but H3K4me3 and H3K9ac levels remained high. OTX2-bound bivalent genes showed high expression levels in D425, but the expression of most of these genes did not change after OTX2 silencing and loss of the H3K27me3 mark. Maintaining promoters in a bivalent state by sustaining H3K27 trimethylation therefore seems to be an important function of OTX2 in medulloblastoma, while other transcription factors might regulate the actual expression levels of these genes.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , Histonas/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Histonas/genética , Humanos , Meduloblastoma/clasificación , Meduloblastoma/genética , Meduloblastoma/patología , Metilación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA