Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Radiology ; 310(1): e230981, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193833

RESUMEN

Background Multiple commercial artificial intelligence (AI) products exist for assessing radiographs; however, comparable performance data for these algorithms are limited. Purpose To perform an independent, stand-alone validation of commercially available AI products for bone age prediction based on hand radiographs and lung nodule detection on chest radiographs. Materials and Methods This retrospective study was carried out as part of Project AIR. Nine of 17 eligible AI products were validated on data from seven Dutch hospitals. For bone age prediction, the root mean square error (RMSE) and Pearson correlation coefficient were computed. The reference standard was set by three to five expert readers. For lung nodule detection, the area under the receiver operating characteristic curve (AUC) was computed. The reference standard was set by a chest radiologist based on CT. Randomized subsets of hand (n = 95) and chest (n = 140) radiographs were read by 14 and 17 human readers, respectively, with varying experience. Results Two bone age prediction algorithms were tested on hand radiographs (from January 2017 to January 2022) in 326 patients (mean age, 10 years ± 4 [SD]; 173 female patients) and correlated strongly with the reference standard (r = 0.99; P < .001 for both). No difference in RMSE was observed between algorithms (0.63 years [95% CI: 0.58, 0.69] and 0.57 years [95% CI: 0.52, 0.61]) and readers (0.68 years [95% CI: 0.64, 0.73]). Seven lung nodule detection algorithms were validated on chest radiographs (from January 2012 to May 2022) in 386 patients (mean age, 64 years ± 11; 223 male patients). Compared with readers (mean AUC, 0.81 [95% CI: 0.77, 0.85]), four algorithms performed better (AUC range, 0.86-0.93; P value range, <.001 to .04). Conclusions Compared with human readers, four AI algorithms for detecting lung nodules on chest radiographs showed improved performance, whereas the remaining algorithms tested showed no evidence of a difference in performance. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Omoumi and Richiardi in this issue.


Asunto(s)
Inteligencia Artificial , Programas Informáticos , Humanos , Femenino , Masculino , Niño , Persona de Mediana Edad , Estudios Retrospectivos , Algoritmos , Pulmón
2.
Eur Radiol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634877

RESUMEN

OBJECTIVES: To develop and validate an artificial intelligence (AI) system for measuring and detecting signs of carpal instability on conventional radiographs. MATERIALS AND METHODS: Two case-control datasets of hand and wrist radiographs were retrospectively acquired at three hospitals (hospitals A, B, and C). Dataset 1 (2178 radiographs from 1993 patients, hospitals A and B, 2018-2019) was used for developing an AI system for measuring scapholunate (SL) joint distances, SL and capitolunate (CL) angles, and carpal arc interruptions. Dataset 2 (481 radiographs from 217 patients, hospital C, 2017-2021) was used for testing, and with a subsample (174 radiographs from 87 patients), an observer study was conducted to compare its performance to five clinicians. Evaluation metrics included mean absolute error (MAE), sensitivity, and specificity. RESULTS: Dataset 2 included 258 SL distances, 189 SL angles, 191 CL angles, and 217 carpal arc labels obtained from 217 patients (mean age, 51 years ± 23 [standard deviation]; 133 women). The MAE in measuring SL distances, SL angles, and CL angles was respectively 0.65 mm (95%CI: 0.59, 0.72), 7.9 degrees (95%CI: 7.0, 8.9), and 5.9 degrees (95%CI: 5.2, 6.6). The sensitivity and specificity for detecting arc interruptions were 83% (95%CI: 74, 91) and 64% (95%CI: 56, 71). The measurements were largely comparable to those of the clinicians, while arc interruption detections were more accurate than those of most clinicians. CONCLUSION: This study demonstrates that a newly developed automated AI system accurately measures and detects signs of carpal instability on conventional radiographs. CLINICAL RELEVANCE STATEMENT: This system has the potential to improve detections of carpal arc interruptions and could be a promising tool for supporting clinicians in detecting carpal instability.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39045713

RESUMEN

PURPOSE: The purpose of this study was to develop a multidisciplinary guideline for patellofemoral pain (PFP) and patellar tendinopathy (PT) to facilitate clinical decision-making in primary and secondary care. METHODS: A multidisciplinary expert panel identified questions in clinical decision-making. Based on a systematic literature search, the strength of the scientific evidence was determined according to the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) method and the weight assigned to the considerations by the expert panel together determined the strength of the recommendations. RESULTS: After confirming PFP or PT as a clinical diagnosis, patients should start with exercise therapy. Additional conservative treatments are indicated only when exercise therapy does not result in clinically relevant changes after six (PFP) or 12 (PT) weeks. Pain medications should be reserved for cases of severe pain. The additional value of imaging assessments for PT is limited. Open surgery is reserved for very specific cases of nonresponders to exercise therapy and those requiring additional conservative treatments. Although the certainty of evidence regarding exercise therapy for PFP and PT had to be downgraded ('very low GRADE' and 'low GRADE'), the expert panel advocates its use as the primary treatment strategy. The panel further formulated weaker recommendations regarding additional conservative treatments, pain medications, imaging assessments and open surgery ('very low GRADE' to 'low GRADE' assessment or absence of scientific evidence). CONCLUSION: This guideline recommends starting with exercise therapy for PFP and PT. The recommendations facilitate clinical decision-making, and thereby optimizing treatment and preventing unnecessary burdens, risks and costs to patients and society. LEVEL OF EVIDENCE: Level V, clinical practice guideline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA